Implications for metal and volatile cycles from the pH of subduction zone fluids


The chemistry of aqueous fluids controls the transport and exchange—the cycles—of metals1,2,3,4,5 and volatile elements3,6,7 on Earth. Subduction zones, where oceanic plates sink into the Earth’s interior, are the most important geodynamic setting for this fluid-mediated chemical exchange2,6,7,8,9,10. Characterizing the ionic speciation and pH of fluids equilibrated with rocks at subduction zone conditions has long been a major challenge in Earth science11,12. Here we report thermodynamic predictions of fluid–rock equilibria that tie together models of the thermal structure, mineralogy and fluid speciation of subduction zones. We find that the pH of fluids in subducted crustal lithologies is confined to a mildly alkaline range, modulated by rock volatile and chlorine contents. Cold subduction typical of the Phanerozoic eon13 favours the preservation of oxidized carbon in subducting slabs. In contrast, the pH of mantle wedge fluids is very sensitive to minor variations in rock composition. These variations may be caused by intramantle differentiation, or by infiltration of fluids enriched in alkali components extracted from the subducted crust. The sensitivity of pH to soluble elements in low abundance in the host rocks, such as carbon, alkali metals and halogens, illustrates a feedback between the chemistry of the Earth’s atmosphere–ocean system14,15 and the speciation of subduction zone fluids via the composition of the seawater-altered oceanic lithosphere. Our findings provide a perspective on the controlling reactions that have coupled metal and volatile cycles in subduction zones for more than 3 billion years77.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Figure 1: ΔpH of solutions in equilibrium with basalt, pelite and peridotite lithologies.
Figure 2: ΔpH along three representative Precambrian and Phanerozoic P–T paths.
Figure 3: Metasomatism at the subduction interface.


  1. 1

    Eugster, H. P. Minerals in hot water. Am. Mineral. 71, 655–673 (1986)

    CAS  Google Scholar 

  2. 2

    Hedenquist, J. W. & Lowenstern, J. B. The role of magmas in the formation of hydrothermal ore deposits. Nature 370, 519–527 (1994)

    ADS  CAS  Google Scholar 

  3. 3

    Pokrovski, G. S. & Dubrovinsky, L. S. The S3 ion is stable in geological fluids at elevated temperatures and pressures. Science 331, 1052–1054 (2011)

    ADS  CAS  Google Scholar 

  4. 4

    Phillips, G. N. & Evans, K. A. Role of CO2 in the formation of gold deposits. Nature 429, 860–863 (2004)

    ADS  CAS  Google Scholar 

  5. 5

    Dolejs, D. & Wagner, T. Thermodynamic modeling of non-ideal mineral-fluid equilibria in the system Si-Al-Fe-Mg-Ca-Na-K-H-O-Cl at elevated temperatures and pressures: implications for hydrothermal mass transfer in granitic rocks. Geochim. Cosmochim. Acta 72, 526–553 (2008)

    ADS  CAS  Google Scholar 

  6. 6

    Evans, K. A. The redox budget of subduction zones. Earth Sci. Rev. 113, 11–32 (2012)

    ADS  CAS  Google Scholar 

  7. 7

    Hayes, J. M. & Waldbauer, J. R. The carbon cycle and associated redox processes through time. Phil. Trans. R. Soc. Lond. B 361, 931–950 (2006)

    CAS  Google Scholar 

  8. 8

    Eiler, J. M., McInnes, B., Valley, J. W., Graham, C. M. & Stolper, E. M. Oxygen isotope evidence for slab-derived fluids in the sub-arc mantle. Nature 393, 777–781 (1998)

    ADS  CAS  Google Scholar 

  9. 9

    Stolper, E. & Newman, S. The role of water in the petrogenesis of Mariana trough magmas. Earth Planet. Sci. Lett. 121, 293–325 (1994)

    ADS  CAS  Google Scholar 

  10. 10

    Galvez, M. E. et al. Graphite formation by carbonate reduction during subduction. Nat. Geosci. 6, 473–477 (2013)

    ADS  CAS  Google Scholar 

  11. 11

    Ni, H., Chen, Q. & Keppler, H. Electrical conductivity measurements of aqueous fluids under pressure with a hydrothermal diamond anvil cell. Rev. Sci. Instrum. 85, 115107 (2014)

    ADS  Google Scholar 

  12. 12

    Ding, K. & Seyfried, W. E. Direct pH measurement of NaCl-bearing fluid with an in situ sensor at 400 C and 40 megapascals. Science 272, 1634–1636 (1996)

    ADS  CAS  Google Scholar 

  13. 13

    Brown, M. Duality of thermal regimes is the distinctive characteristic of plate tectonics since the Neoarchean. Geology 34, 961–964 (2006)

    ADS  Google Scholar 

  14. 14

    Anbar, A. D. Elements and evolution Science 322, 1481–1483 (2008)

    ADS  CAS  Google Scholar 

  15. 15

    Staudigel, H. & Hart, S. R. Alteration of basaltic glass: Mechanisms and significance for the oceanic crust-seawater budget. Geochim. Cosmochim. Acta. 47, 337–350 (1983)

    ADS  CAS  Google Scholar 

  16. 16

    Poli, S. Carbon mobilized at shallow depths in subduction zones by carbonatitic liquids. Nat. Geosci. 8, 633–636 (2015)

    ADS  CAS  Google Scholar 

  17. 17

    Hirth, G. & Kohlstedt, D. L. Water in the oceanic upper mantle: implications for rheology, melt extraction and the evolution of the lithosphere. Earth Planet. Sci. Lett. 144, 93–108 (1996)

    ADS  CAS  Google Scholar 

  18. 18

    Fischer, W. W. et al. SQUID–SIMS is a useful approach to uncover primary signals in the Archean sulfur cycle. Proc. Natl Acad. Sci. USA 111, 5468–5473 (2014)

    ADS  CAS  Google Scholar 

  19. 19

    Pan, D., Spanu, L., Harrison, B., Sverjensky, D. A. & Galli, G. Dielectric properties of water under extreme conditions and transport of carbonates in the deep Earth. Proc. Natl Acad. Sci. USA 110, 6646–6650 (2013)

    ADS  CAS  Google Scholar 

  20. 20

    Sverjensky, D. A., Harrison, B. & Azzolini, D. Water in the deep Earth: the dielectric constant and the solubilities of quartz and corundum to 60kb and 1200° C. Geochim. Cosmochim. Acta 129, 125–145 (2014)

    ADS  CAS  Google Scholar 

  21. 21

    Galvez, M. E., Manning, C. E., Connolly, J. A. & Rumble, D. The solubility of rocks in metamorphic fluids: a model for rock-dominated conditions to upper mantle pressure and temperature. Earth Planet. Sci. Lett. 430, 486–498 (2015)

    ADS  CAS  Google Scholar 

  22. 22

    Mountain, R. D. & Harvey, A. H. Molecular dynamics evaluation of dielectric constant mixing rules for H2O–CO2 at geologic conditions. J. Solution Chem. 44, 2179–2193 (2015)

    CAS  PubMed  PubMed Central  Google Scholar 

  23. 23

    Wood, B. J. & Walther, J. V. Rates of hydrothermal reactions. Science 222, 413–415 (1983)

    ADS  CAS  Google Scholar 

  24. 24

    Manning, C. E., Antignano, A. & Lin, H. A. Premelting polymerization of crustal and mantle fluids, as indicated by the solubility of albite + paragonite + quartz in H2O at 1GPa and 350–620° C. Earth Planet. Sci. Lett. 292, 325–336 (2010)

    ADS  CAS  Google Scholar 

  25. 25

    Aranovich, L. Y. & Newton, R. C. Experimental determination of CO2-H2O activity-composition relations at 600–1000 degrees C and 6–14 kbar by reversed decarbonation and dehydration reactions. Am. Mineral. 84, 1319–1332 (1999)

    ADS  CAS  Google Scholar 

  26. 26

    Liou, J., Zhang, R. & Ernst, W. Occurrences of hydrous and carbonate phases in ultrahigh-pressure rocks from east-central China: implications for the role of volatiles deep in cold subduction zones. Isl. Arc 4, 362–375 (1995)

    Google Scholar 

  27. 27

    Rohrbach, A. & Schmidt, M. W. Redox freezing and melting in the Earth’s deep mantle resulting from carbon-iron redox coupling. Nature 472, 209–212 (2011)

    ADS  CAS  Google Scholar 

  28. 28

    Li, H. & Hermann, J. Apatite as an indicator of fluid salinity: an experimental study of chlorine and fluorine partitioning in subducted sediments. Geochim. Cosmochim. Acta 166, 267–297 (2015)

    ADS  CAS  Google Scholar 

  29. 29

    Parkinson, I. J. & Pearce, J. A. Peridotites from the Izu–Bonin–Mariana forearc (ODP Leg 125): evidence for mantle melting and melt–mantle interaction in a supra-subduction zone setting. J. Petrol. 39, 1577–1618 (1998)

    ADS  CAS  Google Scholar 

  30. 30

    Mikhail, S. & Sverjensky, D. A. Nitrogen speciation in upper mantle fluids and the origin of Earth’s nitrogen-rich atmosphere. Nat. Geosci. 7, 816–819 (2014)

    ADS  CAS  Google Scholar 

  31. 31

    Ryabchikov, I., Schreyer, W. & Abraham, K. Compositions of aqueous fluids in equilibrium with pyroxenes and olivines at mantle pressures and temperatures. Contrib. Mineral. Petrol. 79, 80–84 (1982)

    ADS  CAS  Google Scholar 

  32. 32

    Wilke, M. et al. Zircon solubility and zirconium complexation in H2O+Na2O+SiO2±Al2O3 fluids at high pressure and temperature. Earth Planet. Sci. Lett. 349-350, 15–25 (2012)

    ADS  CAS  Google Scholar 

  33. 33

    Salvi, S., Pokrovski, G. S. & Schott, J. Experimental investigation of aluminum-silica aqueous complexing at 300 C. Chem. Geol. 151, 51–67 (1998)

    ADS  CAS  Google Scholar 

  34. 34

    Connolly, J. A. D. Multivariable phase diagrams; an algorithm based on generalized thermodynamics. Am. J. Sci. 290, 666–718 (1990)

    ADS  Google Scholar 

  35. 35

    Holland, T. & Powell, R. An internally consistent thermodynamic data set for phases of petrological interest. J. Metamorph. Geol. 16, 309–343 (1998)

    ADS  CAS  Google Scholar 

  36. 36

    Caddick, M. J. & Thompson, A. B. Quantifying the tectono-metamorphic evolution of pelitic rocks from a wide range of tectonic settings: mineral compositions in equilibrium. Contrib. Mineral. Petrol. 156, 177–195 (2008)

    ADS  CAS  Google Scholar 

  37. 37

    Shaw, D. M. Geochemistry of pelitic rocks. Part III: Major elements and general geochemistry. Geol. Soc. Am. Bull. 67, 919–934 (1956)

    ADS  CAS  Google Scholar 

  38. 38

    Pearce, J. A. Statistical analysis of major element patterns in basalts. J. Petrol. 17, 15–43 (1976)

    ADS  CAS  Google Scholar 

  39. 39

    Padrón-Navarta, J. A. et al. Tschermak’s substitution in antigorite and consequences for phase relations and water liberation in high-grade serpentinites. Lithos 178, 186–196 (2013)

    ADS  Google Scholar 

  40. 40

    Alt, J. C. & Teagle, D. A. H. The uptake of carbon during alteration of ocean crust. Geochim. Cosmochim. Acta 63, 1527–1535 (1999)

    ADS  CAS  Google Scholar 

  41. 41

    Hermann, J., Zheng, Y.-F. & Rubatto, D. Deep fluids in subducted continental crust. Elements 9, 281–287 (2013)

    CAS  Google Scholar 

  42. 42

    Tajcˇmanová, L., Connolly, J. A. D. & Cesare, B. A thermodynamic model for titanium and ferric iron solution in biotite. J. Metamorph. Geol. 27, 153–165 (2009)

    ADS  Google Scholar 

  43. 43

    Holland, T., Baker, J. & Powell, R. Mixing properties and activity-composition and relationships of chlorites in the system MgO-FeO-Al2O3-SiO2-H2O. Eur. J. Mineral. 10, 395–406 (1998)

    ADS  CAS  Google Scholar 

  44. 44

    Mahar, E. M., Baker, J. M., Powell, R., Holland, T. J. B. & Howell, N. The effect of Mn on mineral stability in metapelites. J. Metamorph. Geol. 15, 223–238 (1997)

    ADS  CAS  Google Scholar 

  45. 45

    Coggon, R. & Holland, T. J. B. Mixing properties of phengitic micas and revised garnet-phengite thermobarometers. J. Metamorph. Geol. 20, 683–696 (2002)

    ADS  CAS  Google Scholar 

  46. 46

    Auzanneau, E., Schmidt, M. W., Vielzeuf, D. & Connolly, J. D. Titanium in phengite: a geobarometer for high temperature eclogites. Contrib. Mineral. Petrol. 159, 1–24 (2010)

    ADS  CAS  Google Scholar 

  47. 47

    Waldbaum, D. R. & Thompson, J. B. Mixing properties of sanidine crystalline solutions. 2. Calculations based on volume data. Am. Mineral. 53, 2000–2017 (1968)

    CAS  Google Scholar 

  48. 48

    Holland, T. & Powell, R. Thermodynamics of order-disorder in minerals: II. Symmetric formalism applied to solid solutions. Am. Mineral. 81, 1425–1437 (1996)

    ADS  CAS  Google Scholar 

  49. 49

    White, R. W., Powell, R., Holland, T. J. B. & Worley, B. A. The effect of TiO2 and Fe2O3 on metapelitic assemblages at greenschist and amphibolite facies conditions: mineral equilibria calculations in the system K2O-FeO-MgO-Al2O3-SiO2-H2O-TiO2-Fe2O3 . J. Metamorph. Geol. 18, 497–511 (2000)

    ADS  CAS  Google Scholar 

  50. 50

    Newton, R. C., Charlu, T. V. & Kleppa, O. J. Thermochemistry of the high structural state plagioclases. Geochim. Cosmochim. Acta 44, 933–941 (1980)

    ADS  CAS  Google Scholar 

  51. 51

    Dale, J., Powell, R., White, R., Elmer, F. & Holland, T. A thermodynamic model for Ca–Na clinoamphiboles in Na2O–CaO–FeO–MgO–Al2O3–SiO2–H2O–O for petrological calculations. J. Metamorph. Geol. 23, 771–791 (2005)

    ADS  CAS  Google Scholar 

  52. 52

    Pirard, C. & Hermann, J. Experimentally determined stability of alkali amphibole in metasomatised dunite at sub-arc pressures. Contrib. Mineral. Petrol. 169, 1–26 (2015)

    ADS  CAS  Google Scholar 

  53. 53

    Hack, A. C., Thompson, A. B. & Aerts, M. Phase relations involving hydrous silicate melts, aqueous fluids, and minerals. Rev. Mineral. Geochem. 65, 129–185 (2007)

    CAS  Google Scholar 

  54. 54

    Kessel, R., Ulmer, P., Pettke, T., Schmidt, M. W. & Thompson, A. B. The water-basalt system at 4 to 6 GPa: phase relations and second critical endpoint in a K-free eclogite at 700 to 1400°C. Earth Planet. Sci. Lett. 237, 873–892 (2005)

    ADS  CAS  Google Scholar 

  55. 55

    Schmidt, M. W. & Poli, S. Experimentally based water budgets for dehydrating slabs and consequences for arc magma generation. Earth Planet. Sci. Lett. 163, 361–379 (1998)

    ADS  CAS  Google Scholar 

  56. 56

    Syracuse, E. M., van Keken, P. E. & Abers, G. A. The global range of subduction zone thermal models. Phys. Earth Planet. Inter. 183, 73–90 (2010)

    ADS  Google Scholar 

  57. 57

    Penniston-Dorland, S. C., Kohn, M. J. & Manning, C. E. The global range of subduction zone thermal structures from exhumed blueschists and eclogites: rocks are hotter than models. Earth Planet. Sci. Lett. 428, 243–254 (2015)

    ADS  CAS  Google Scholar 

  58. 58

    Connolly, J. A. D. & Cesare, B. C-O-H-S fluid composition and oxygen fugacity in graphitic metapelites. J. Metamorph. Geol. 11, 379–388 (1993)

    ADS  CAS  Google Scholar 

  59. 59

    Holland, T. & Powell, R. Activity–composition relations for phases in petrological calculations: an asymmetric multicomponent formulation. Contrib. Mineral. Petrol. 145, 492–501 (2003)

    ADS  CAS  Google Scholar 

  60. 60

    Kerrick, D. M. & Connolly, J. A. D. Metamorphic devolatilization of subducted marine sediments and the transport of volatiles into the Earth’s mantle. Nature 411, 293–296 (2001)

    ADS  CAS  Google Scholar 

  61. 61

    Kelemen, P. B. & Manning, C. E. Reevaluating carbon fluxes in subduction zones, what goes down, mostly comes up. Proc. Natl Acad. Sci. USA 112, E3997–E4006 (2015)

    ADS  CAS  Google Scholar 

  62. 62

    Caciagli, N. C. & Manning, C. E. The solubility of calcite in water at 6-16 kbar and 500-800°C. Contrib. Mineral. Petrol. 146, 275–285 (2003)

    ADS  CAS  Google Scholar 

  63. 63

    Frezzotti, M. L., Selverstone, J., Sharp, Z. D. & Compagnoni, R. Carbonate dissolution during subduction revealed by diamond-bearing rocks from the Alps. Nat. Geosci. 4, 703–706 (2011)

    ADS  CAS  Google Scholar 

  64. 64

    Helgeson, H. C., Kirkham, D. H. & Flowers, G. C. Theoretical prediction of the thermodynamic behavior of aqueous electrolytes by high pressures and temperatures; IV, Calculation of activity coefficients, osmotic coefficients, and apparent molal and standard and relative partial molal properties to 600 degrees C and 5kb. Am. J. Sci. 281, 1249–1516 (1981)

    ADS  CAS  Google Scholar 

  65. 65

    Tanger, J. C. & Helgeson, H. C. Calculation of the thermodynamic and transport properties of aqueous species at high pressures and temperatures; revised equations of state for the standard partial molal properties of ions and electrolytes. Am. J. Sci. 288, 19–98 (1988)

  66. 66

    Helgeson, H. C. & Kirkham, D. H. Theoretical prediction of the thermodynamic behavior of aqueous electrolytes at high pressures and temperatures; II, Debye-Huckel parameters for activity coefficients and relative partial molal properties. Am. J. Sci. 274, 1199–1261 (1974)

    ADS  CAS  Google Scholar 

  67. 67

    Helgeson, H. C. & Kirkham, D. H. Theoretical prediction of the thermodynamic behavior of aqueous electrolytes at high pressures and temperatures; I, Summary of the thermodynamic/electrostatic properties of the solvent. Am. J. Sci. 274, 1089–1198 (1974)

    ADS  CAS  Google Scholar 

  68. 68

    Helgeson, H. C. & Kirkham, D. H. Theoretical prediction of the thermodynamic properties of aqueous electrolytes at high pressures and temperatures. III. Equation of state for aqueous species at infinite dilution. Am. J. Sci. 276, 97–240 (1976)

    ADS  CAS  Google Scholar 

  69. 69

    Sverjensky, D. A., Hemley, J. & d’Angelo, W. Thermodynamic assessment of hydrothermal alkali feldspar-mica-aluminosilicate equilibria. Geochim. Cosmochim. Acta 55, 989–1004 (1991)

    ADS  CAS  Google Scholar 

  70. 70

    Miron, G. D., Wagner, T., Kulik, D. A. & Heinrich, C. A. Internally consistent thermodynamic data for aqueous species in the system Na–K–Al–Si–O–H–Cl. Geochim. Cosmochim. Acta 187, 41–78 (2016)

    ADS  CAS  Google Scholar 

  71. 71

    Fernández, D. P., Mulev, Y., Goodwin, A. & Sengers, J. L. A database for the static dielectric constant of water and steam. J. Phys. Chem. Ref. Data 24, 33–70 (1995)

    ADS  Google Scholar 

  72. 72

    Fernández, D., Goodwin, A., Lemmon, E. W., Sengers, J. L. & Williams, R. A formulation for the static permittivity of water and steam at temperatures from 238 K to 873 K at pressures up to 1200 MPa, including derivatives and Debye–Hückel coefficients. J. Phys. Chem. Ref. Data 26, 1125–1166 (1997)

    ADS  Google Scholar 

  73. 73

    Bockris, J. O. M. & Reddy, A. K. N. Modern Electrochemistry: An Introduction to an Interdisciplinary Area Vol. 2 (Springer, 1973)

  74. 74

    Landau, L. D. & Lifshitz, M. Electrodynamics of Continuous Media (Pergamon, 1960)

  75. 75

    Looyenga, H. Dielectric constants of heterogeneous mixtures. Physica 31, 401–406 (1965)

    ADS  CAS  Google Scholar 

  76. 76

    Harvey, A. H. & Prausnitz, J. M. Dielectric constants of fluid mixtures over a wide range of temperature and density. J. Solution Chem. 16, 857–869 (1987)

    CAS  Google Scholar 

  77. 77

    Walther, J. V. Ionic association in H2O-CO2 fluids at mid-crustal conditions. J. Metamorph. Geol. 10, 789–797 (1992)

    ADS  CAS  Google Scholar 

  78. 78

    Akinfiev, N. & Zotov, A. Thermodynamic description of equilibria in mixed fluids (H2O-non-polar gas) over a wide range of temperature (25-700°C) and pressure (1-5000 bars). Geochim. Cosmochim. Acta 63, 2025–2041 (1999)

    ADS  CAS  Google Scholar 

  79. 79

    Davies, C. W. Ion Association (Butterworths, 1962)

  80. 80

    Davies, C. W. The extent of dissociation of salts in water. Part VIII. An equation for the mean ionic activity coefficient of an electrolyte in water, and a revision of the dissociation constants of some sulphates. J. Chem. Soc. 2093–2098 (1938)

  81. 81

    van Keken, P. E., Hacker, B. R., Syracuse, E. M. & Abers, G. A. Subduction factory: 4. Depth-dependent flux of H2O from subducting slabs worldwide. J. Geophys. Res. Solid Earth 116, B01401 (2011)

    ADS  Google Scholar 

  82. 82

    Dasgupta, R. & Hirschmann, M. M. The deep carbon cycle and melting in Earth’s interior. Earth Planet. Sci. Lett. 298, 1–13 (2010)

    ADS  CAS  Google Scholar 

  83. 83

    Thomson, A. R., Walter, M. J., Kohn, S. C. & Brooker, R. A. Slab melting as a barrier to deep carbon subduction. Nature 529, 76–79 (2016)

    ADS  CAS  Google Scholar 

  84. 84

    Connolly, J. A. D. Computation of phase equilibria by linear programming: a tool for geodynamic modeling and its application to subduction zone decarbonation. Earth Planet. Sci. Lett. 236, 524–541 (2005)

    ADS  CAS  Google Scholar 

  85. 85

    Gorman, P. J., Kerrick, D. M. & Connolly, J. A. D. Modeling open system metamorphic decarbonation of subducting slabs. Geochem. Geophys. Geosyst. 7, Q04007 (2006)

    ADS  Google Scholar 

  86. 86

    Skora, S. et al. Hydrous phase relations and trace element partitioning behaviour in calcareous sediments at subduction-zone conditions. J. Petrol. 56, 953–980 (2015)

    ADS  CAS  Google Scholar 

  87. 87

    Zhang, Z. & Duan, Z. Prediction of the PVT properties of water over wide range of temperatures and pressures from molecular dynamics simulation. Phys. Earth Planet. Inter. 149, 335–354 (2005)

    ADS  CAS  Google Scholar 

  88. 88

    Pokrovskii, V. A. & Helgeson, H. C. Thermodynamic properties of aqueous species and the solubilities of minerals at high pressures and temperatures; the system Al2O3-H2O-NaCl. Am. J. Sci. 295, 1255–1342 (1995)

    ADS  CAS  Google Scholar 

  89. 89

    Pokrovskii, V. A. & Helgeson, H. C. Thermodynamic properties of aqueous species and the solubilities of minerals at high pressures and temperatures: the system Al2O3-H2O-KOH. Chem. Geol. 137, 221–242 (1997)

    ADS  CAS  Google Scholar 

  90. 90

    Sverjensky, D. A., Shock, E. L. & Helgeson, H. C. Prediction of the thermodynamic properties of aqueous metal complexes to 1000°C and 5 kb. Geochim. Cosmochim. Acta 61, 1359–1412 (1997)

    ADS  CAS  Google Scholar 

  91. 91

    Xie, Z. & Walther, J. V. Wollastonite+ quartz solubility in supercritical NaCl aqueous solutions. Am. J. Sci. 293, 235–255 (1993)

    ADS  CAS  Google Scholar 

  92. 92

    Miron, G. D. Internally Consistent Thermodynamic Database for Fluid-Rock Interaction: Tools, Methods and Optimization. Dissertation no. 23242, ETH-Zurich (2016)

Download references


The presentation of this work benefited from informal reviews by O. Bachmann and D. Rumble. Discussions with P. Ulmer, X. Zhong, J.A. Padron Navarta, D. Miron, D. Sverjensky, J. Eiler and J. Cohen were helpful. This research was supported by an ETH fellowship ETH/CoFUND Fel-06 13-2 (M.E.G). Partial support from Carnegie and Society in Science/Branco-Weiss fellowships (M.E.G.), Swiss National Science Foundation Grant 200021_146872 (J.A.D.C), Deep Carbon Observatory and National Science Fundation grant EAR 1347987 (C.E.M) are also acknowledged.

Author information




M.E.G. conceived the project, developed the computational tools used and performed the calculations. J.A.D.C. developed the PerpleX software used for phase equilibria computations. M.E.G., J.A.D.C. and C.E.M. analysed the data and wrote the paper.

Corresponding author

Correspondence to Matthieu E. Galvez.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Additional information

Reviewer Information Nature thanks D. Dolejs, K. Evans and H. Keppler for their contribution to the peer review of this work.

Extended data figures and tables

Extended Data Figure 1 Properties of water at geological conditions.

The relative permittivity20 (εr) and density87 (ρ) of pure water as functions of pressure and temperature. Adapted from ref. 21.

Extended Data Figure 2 Oxide chemical potential across a peridotite–crust interface.

Shown are profiles of oxide chemical potentials (μ) in the metasomatic model (Fig. 3c, d) relative to that for component at 600 °C and 2 GPa.

Extended Data Figure 3 Relative activity of selected neutral species across a serpentinite–crust interface.

Shown are relative activities of neutral polynuclear clusters , and , as well as Na+ and , in the fluid, at 600 °C and 2 GPa (see Fig. 3c, d).

Extended Data Table 1 Rock compositions used for phase equilibria computations
Extended Data Table 2 Thermodynamic data source for solutes used in this study
Extended Data Table 3 Estimates of global annual C fluxes

PowerPoint slides

Source data

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Galvez, M., Connolly, J. & Manning, C. Implications for metal and volatile cycles from the pH of subduction zone fluids. Nature 539, 420–424 (2016).

Download citation

Further reading


By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.