Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Nanoscale thermal imaging of dissipation in quantum systems

Abstract

Energy dissipation is a fundamental process governing the dynamics of physical, chemical and biological systems. It is also one of the main characteristics that distinguish quantum from classical phenomena. In particular, in condensed matter physics, scattering mechanisms, loss of quantum information or breakdown of topological protection are deeply rooted in the intricate details of how and where the dissipation occurs. Yet the microscopic behaviour of a system is usually not formulated in terms of dissipation because energy dissipation is not a readily measurable quantity on the micrometre scale. Although nanoscale thermometry has gained much recent interest1,2,3,4,5,6,7,8,9,10,11,12,13,14,15, existing thermal imaging methods are not sensitive enough for the study of quantum systems and are also unsuitable for the low-temperature operation that is required. Here we report a nano-thermometer based on a superconducting quantum interference device with a diameter of less than 50 nanometres that resides at the apex of a sharp pipette: it provides scanning cryogenic thermal sensing that is four orders of magnitude more sensitive than previous devices—below 1 μK Hz−1/2. This non-contact, non-invasive thermometry allows thermal imaging of very low intensity, nanoscale energy dissipation down to the fundamental Landauer limit16,17,18 of 40 femtowatts for continuous readout of a single qubit at one gigahertz at 4.2 kelvin. These advances enable the observation of changes in dissipation due to single-electron charging of individual quantum dots in carbon nanotubes. They also reveal a dissipation mechanism attributable to resonant localized states in graphene encapsulated within hexagonal boron nitride, opening the door to direct thermal imaging of nanoscale dissipation processes in quantum matter.

This is a preview of subscription content, access via your institution

Relevant articles

Open Access articles citing this article.

Access options

Rent or buy this article

Get just this article for as long as you need it

$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: tSOT characteristics and performance.
Figure 2: Thermal imaging of single-walled CNTs and scanning gate thermometry of quantum dots.
Figure 3: Scanning gate thermometry of dissipation at localized resonant states at graphene edges.

References

  1. Yue, Y. & Wang, X. Nanoscale thermal probing. Nano Rev. 3, 11586 (2012).

    Article  Google Scholar 

  2. Giazotto, F., Heikkilä, T. T., Luukanen, A., Savin, A. M. & Pekola, J. P. Opportunities for mesoscopics in thermometry and refrigeration: physics and applications. Rev. Mod. Phys. 78, 217–274 (2006).

    Article  ADS  CAS  Google Scholar 

  3. Jin, C. Y., Li, Z., Williams, R. S., Lee, K. C. & Park, I. Localized temperature and chemical reaction control in nanoscale space by nanowire array. Nano Lett. 11, 4818–4825 (2011).

    Article  ADS  CAS  PubMed  Google Scholar 

  4. Kucsko, G. et al. Nanometre-scale thermometry in a living cell. Nature 500, 54–58 (2013).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  5. Mecklenburg, M. et al. Nanoscale temperature mapping in operating microelectronic devices. Science 347, 629–632 (2015).

    Article  ADS  CAS  PubMed  Google Scholar 

  6. Teyssieux, D., Thiery, L. & Cretin, B. Near-infrared thermography using a charge-coupled device camera: application to microsystems. Rev. Sci. Instrum. 78, 034902 (2007).

    Article  ADS  CAS  PubMed  Google Scholar 

  7. Toyli, D. M., de las Casas, C. F., Christle, D. J., Dobrovitski, V. V. & Awschalom, D. D. Fluorescence thermometry enhanced by the quantum coherence of single spins in diamond. Proc. Natl Acad. Sci. USA 110, 8417–8421 (2013).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  8. Neumann, P. et al. High-precision nanoscale temperature sensing using single defects in diamond. Nano Lett. 13, 2738–2742 (2013).

    Article  ADS  CAS  PubMed  Google Scholar 

  9. Reparaz, J. S. et al. A novel contactless technique for thermal field mapping and thermal conductivity determination: two-laser Raman thermometry. Rev. Sci. Instrum. 85, 034901 (2014).

    Article  ADS  CAS  PubMed  Google Scholar 

  10. Brites, C. D. S. et al. Thermometry at the nanoscale. Nanoscale 4, 4799–4829 (2012).

    Article  ADS  CAS  PubMed  Google Scholar 

  11. Majumdar, A. Scanning thermal microscopy. Annu. Rev. Mater. Sci. 29, 505–585 (1999).

    Article  ADS  CAS  Google Scholar 

  12. Menges, F. et al. Temperature mapping of operating nanoscale devices by scanning probe thermometry. Nat. Commun. 7, 10874 (2016).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  13. Kim, K., Jeong, W., Lee, W. & Reddy, P. Ultra-high vacuum scanning thermal microscopy for nanometer resolution quantitative thermometry. ACS Nano 6, 4248–4257 (2012).

    Article  CAS  PubMed  Google Scholar 

  14. Sadat, S., Tan, A., Chua, Y. J. & Reddy, P. Nanoscale thermometry using point contact thermocouples. Nano Lett. 10, 2613–2617 (2010).

    Article  ADS  CAS  PubMed  Google Scholar 

  15. Grosse, K. L., Bae, M. H., Lian, F., Pop, E. & King, W. P. Nanoscale Joule heating, Peltier cooling and current crowding at graphene–metal contacts. Nat. Nanotechnol. 6, 287–290 (2011).

    Article  ADS  CAS  PubMed  Google Scholar 

  16. Pekola, J. P. Towards quantum thermodynamics in electronic circuits. Nat. Phys. 11, 118–123 (2015).

    Article  CAS  Google Scholar 

  17. Landauer, R. Irreversibility and heat generation in the computing process. IBM J. Res. Develop. 5, 183–191 (1961).

    Article  MathSciNet  Google Scholar 

  18. Bérut, A. et al. Experimental verification of Landauer’s principle linking information and thermodynamics. Nature 483, 187–189 (2012).

    Article  ADS  PubMed  Google Scholar 

  19. Herr, Q. P., Herr, A. Y., Oberg, O. T. & Ioannidis, A. G. Ultra-low-power superconductor logic. J. Appl. Phys. 109, 103903 (2011).

    Article  ADS  Google Scholar 

  20. Kuhn, K. J. et al. The ultimate CMOS device and beyond. IEEE Int. Electron Devices Meet. 8.1.1.–8.1.4 (2012).

  21. Faivre, T., Golubev, D. & Pekola, J. P. Josephson junction based thermometer and its application in bolometry. J. Appl. Phys. 116, 094302 (2014).

    Article  ADS  Google Scholar 

  22. Vasyukov, D. et al. A scanning superconducting quantum interference device with single electron spin sensitivity. Nat. Nanotechnol. 8, 639–644 (2013).

    Article  ADS  CAS  PubMed  Google Scholar 

  23. Finkler, A. et al. Self-aligned nanoscale SQUID on a tip. Nano Lett. 10, 1046–1049 (2010).

    Article  ADS  CAS  PubMed  Google Scholar 

  24. Schwab, K., Henriksen, E. A., Worlock, J. M. & Roukes, M. L. Measurement of the quantum of thermal conductance. Nature 404, 974–977 (2000).

    Article  ADS  CAS  PubMed  Google Scholar 

  25. Shadmi, N., Geblinger, N., Ismach, A. & Joselevich, E. Formation of ordered vs disordered carbon nanotube serpentines on anisotropic vs isotropic substrates. J. Phys. Chem. C 118, 14044–14050 (2014).

    Article  CAS  Google Scholar 

  26. Woodside, M. T. & McEuen, P. L. Scanned probe imaging of charge states in nanotube quantum dots. Science 296, 1098–1101 (2002).

    Article  ADS  CAS  PubMed  Google Scholar 

  27. Grabert, H. & Devoret, M. H. (eds) Single Charge Tunneling: Coulomb Blockade Phenomena in Nanostructures (Vol. 294, Nato Sci. Ser. B, Springer, 2013).

  28. Bandurin, D. A. et al. Negative local resistance caused by viscous electron backflow in graphene. Science 351, 1055–1058 (2016).

    Article  ADS  CAS  PubMed  Google Scholar 

  29. Bistritzer, R. & MacDonald, A. H. Electronic cooling in graphene. Phys. Rev. Lett. 102, 206410 (2009).

    Article  ADS  CAS  PubMed  Google Scholar 

  30. Song, J. C. W., Reizer, M. Y. & Levitov, L. S. Disorder-assisted electron-phonon scattering and cooling pathways in graphene. Phys. Rev. Lett. 109, 106602 (2012).

    Article  ADS  PubMed  Google Scholar 

  31. Pereira, V. M., Guinea, F., Lopes dos Santos, J. M. B., Peres, N. M. R. & Castro Neto, A. H. Disorder induced localized states in graphene. Phys. Rev. Lett. 96, 036801 (2006).

    Article  ADS  PubMed  Google Scholar 

  32. González-Herrero, H. et al. Atomic-scale control of graphene magnetism by using hydrogen atoms. Science 352, 437–441 (2016).

    Article  ADS  PubMed  Google Scholar 

  33. Lachman, E. et al. Visualization of superparamagnetic dynamics in magnetic topological insulators. Sci. Adv. 1, e1500740 (2015).

    Article  ADS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank A. F. Young for discussions, M. V. Costache and S. O. Valenzuela for facilitation of fabrication of permalloy (Py)/copper (Cu) samples that were used in Supplementary Information section S9, D. Shahar, I. Tamir, T. Levinson and S. Mitra for assistance in fabrication of a:In2O3 integrated devices that were used in Supplementary Information section S2, M. E. Huber for SOT readout setup, and M. L. Rappaport for technical assistance. This work was supported by the European Research Council (ERC) under the European Union’s Horizon 2020 programme (grant no. 655416), by the Minerva Foundation with funding from the Federal German Ministry of Education and Research, and by a Rosa and Emilio Segré Research Award. L.S.L. and E.Z. acknowledge the support of the MISTI MIT-Israel Seed Fund.

Author information

Authors and Affiliations

Authors

Contributions

D.H., J.C. and E.Z. conceived the technique and designed the experiments. D.H. and J.C. performed the measurements. D.H. performed the analysis and theoretical modelling. L.E. constructed the scanning SOT microscope. M.B.S. and A.K.G. designed and provided the graphene sample and contributed to the analyses of the results. N.S. and E.J. fabricated the CNT samples. J.C. fabricated the Cu/Py sample. D.H., H.R.N. and J.S. fabricated the a:In2O3 sample. D.H. and Y.R. designed and fabricated the spatial resolution demonstration sample. H.R.N., Y.A. and A.U. fabricated the tSOT sensors. Y.A. and Y.M. developed the SOT fabrication technique. A.U., Y.M. and D.H. developed the tuning-fork based tSOT height control technique. L.S.L. performed theoretical analysis. D.H., J.C. and E.Z. wrote the manuscript. All authors participated in discussions and writing of the manuscript.

Corresponding authors

Correspondence to D. Halbertal or E. Zeldov.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Additional information

Reviewer Information Nature thanks I. Maasilta, S. Volz and the other anonymous reviewer(s) for their contribution to the peer review of this work.

Supplementary information

Supplementary Information

This file contains Supplementary Text and Data, Supplementary Figures 1-16 and additional references. (PDF 3962 kb)

Scanning gate thermometry of hBN/graphene/hBN device

Video S1 presents a sequence of ac images of the inner aperture of the washer-shaped graphene device acquired by the tSOT as a function of the potential VtSOT between the tip and the sample. The images present the gradient of the local temperature û Tdc(x,y) produced by measuring the ac signal of the tSOT due to the ac vibration of the TF with an rms amplitude of 5 nm along û at 36.694 kHz as described in Supplementary Information section S16. Supplementary Figures S16b,c present two frames from the video. New ring-like structures are formed along the graphene edge and expand as VtSOT is increased as discussed in Supplementary Information sections S13 and S16. (AVI 3111 kb)

PowerPoint slides

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Halbertal, D., Cuppens, J., Shalom, M. et al. Nanoscale thermal imaging of dissipation in quantum systems. Nature 539, 407–410 (2016). https://doi.org/10.1038/nature19843

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nature19843

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing