Safikhani et al. reply

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.


  1. 1

    Geeleher, P., Gamazon, E. R., Seoighe, C., Cox, N. J. & Huang, R. S. Consistency in large pharmacogenomic studies. Nature 540, (2016)

  2. 2

    Garnett, M. J. et al. Systematic identification of genomic markers of drug sensitivity in cancer cells. Nature 483, 570–575 (2012)

    CAS  ADS  Article  Google Scholar 

  3. 3

    Barretina, J. et al. The Cancer Cell Line Encyclopedia enables predictive modelling of anticancer drug sensitivity. Nature 483, 603–607 (2012)

    CAS  ADS  Article  Google Scholar 

  4. 4

    Haibe-Kains, B. et al. Inconsistency in large pharmacogenomic studies. Nature 504, 389–393 (2013)

    CAS  ADS  Article  Google Scholar 

  5. 5

    Safikhani, Z. et al. Revisiting inconsistency in large pharmacogenomic studies. F1000Research (2016)

  6. 6

    Haverty, P. M. et al. Reproducible pharmacogenomic profiling of cancer cell line panels. Nature 533, 333–337 (2016)

    CAS  ADS  Article  Google Scholar 

  7. 7

    The Cancer Cell Line Encyclopedia Consortium and Genomics of Drug Sensitivity in Cancer Investigators. Pharmacogenomic agreement between two cancer cell line data sets. Nature 528, 84–87 (2015)

  8. 8

    Matthews, B. W. Comparison of the predicted and observed secondary structure of T4 phage lysozyme. Biochim. Biophys. Acta 405, 442–451 (1975)

    CAS  Article  Google Scholar 

  9. 9

    Geeleher, P., Cox, N. J. & Huang, R. S. Clinical drug response can be predicted using baseline gene expression levels and in vitro drug sensitivity in cell lines. Genome Biol. 15, R47 (2014)

    Article  Google Scholar 

  10. 10

    Papillon-Cavanagh, S. et al. Comparison and validation of genomic predictors for anticancer drug sensitivity. J. Am. Med. Inform. Assoc. 20, 597–602 (2013)

    Article  Google Scholar 

  11. 11

    Dong, Z. et al. Anticancer drug sensitivity prediction in cell lines from baseline gene expression through recursive feature selection. BMC Cancer 15, 489 (2015)

    Article  Google Scholar 

  12. 12

    Jang, I. S., Neto, E. C., Guinney, J., Friend, S. H. & Margolin, A. A. Systematic assessment of analytical methods for drug sensitivity prediction from cancer cell line data. Pac. Symp. Biocomput. 2014, 63–74 (2014)

    Google Scholar 

  13. 13

    Cortés-Ciriano, I. et al. Improved large-scale prediction of growth inhibition patterns using the NCI60 cancer cell line panel. Bioinformatics 32, 85–95 (2015)

    PubMed  PubMed Central  Google Scholar 

  14. 14

    Goodspeed, A., Heiser, L. M., Gray, J. W. & Costello, J. C. Tumor-derived cell lines as molecular models of cancer pharmacogenomics. Mol. Cancer Res. 14, 3–13 (2015)

    Article  Google Scholar 

  15. 15

    Sandve, G. K, Nekrutenko, A., Taylor, J. & Hovig, E. Ten simple rules for reproducible computational research. PLoS Comput. Biol.9, e1003285 (2013).

Download references

Author information



Corresponding author

Correspondence to Benjamin Haibe-Kains.

Supplementary information

Supplementary Information

This file contains Supplementary Text and Data, Supplementary Methods, Supplementary Tables 1-2, Supplementary Figures 1-7 and additional references. (PDF 1357 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Safikhani, Z., El-Hachem, N., Smirnov, P. et al. Safikhani et al. reply. Nature 540, E2–E4 (2016).

Download citation

Further reading


By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.


Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing