Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Emergent phenomena induced by spin–orbit coupling at surfaces and interfaces

Abstract

Spin–orbit coupling (SOC) describes the relativistic interaction between the spin and momentum degrees of freedom of electrons, and is central to the rich phenomena observed in condensed matter systems. In recent years, new phases of matter have emerged from the interplay between SOC and low dimensionality, such as chiral spin textures and spin-polarized surface and interface states. These low-dimensional SOC-based realizations are typically robust and can be exploited at room temperature. Here we discuss SOC as a means of producing such fundamentally new physical phenomena in thin films and heterostructures. We put into context the technological promise of these material classes for developing spin-based device applications at room temperature.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Emergent phenomena from spin–orbit coupling (SOC) at surfaces and interfaces.
Figure 2: Band structure and spin–charge conversion in spin-polarized 2D states.
Figure 3: Spin–charge conversion experiments.
Figure 4: Interfacial DMI and chiral spin textures.
Figure 5: Manipulation of magnetic skyrmions.

Similar content being viewed by others

References

  1. Rashba, E. I. Properties of semiconductors with an extremum loop. I. Cyclotron and combinational resonance in a magnetic field perpendicular to the plane of the loop. Sov. Phys. Solid State 2, 1109–1122 (1960)

    Google Scholar 

  2. Manchon, A., Koo, H. C., Nitta, J., Frolov, S. M. & Duine, R. A. New perspectives for Rashba spin–orbit coupling. Nat. Mater. 14, 871–882 (2015)

    Article  CAS  ADS  PubMed  Google Scholar 

  3. Edelstein, V. M. Spin polarization of conduction electrons induced by electric current in two-dimensional asymmetric electron systems. Solid State Commun. 73, 233–235 (1990).This paper describes the mechanism that leads to spin polarization when a charge current passes through a 2D electronic system with SOC, which is the basis of the spin–charge conversion mechanism described here.

    Article  ADS  Google Scholar 

  4. Hoffmann, A. Spin Hall effects in metals. IEEE Trans. Magn. 49, 5172–5193 (2013)

    Article  CAS  ADS  Google Scholar 

  5. Valenzuela, S. O. in Spin Current (eds Maekawa, S. et al.) Ch. 11 (Oxford Univ. Press, 2012)

    Google Scholar 

  6. Cubukcu, M. et al. Spin–orbit torque magnetization switching of a three-terminal perpendicular magnetic tunnel junction. Appl. Phys. Lett. 104, 042406 (2014)

    Article  ADS  CAS  Google Scholar 

  7. Dzyaloshinsky, I. A thermodynamic theory of ‘weak’ ferromagnetism of antiferromagnetics. J. Phys. Chem. Solids 4, 241–255 (1958)

    Article  CAS  ADS  Google Scholar 

  8. Moriya, T. Anisotropic superexchange interaction and weak ferromagnetism. Phys. Rev. 120, 91–98 (1960)

    Article  CAS  ADS  Google Scholar 

  9. Fert, A. & Levy, P. M. Role of anisotropic exchange interactions in determining the properties of spin-glasses. Phys. Rev. Lett. 44, 1538–1541 (1980)

    Article  CAS  ADS  Google Scholar 

  10. Fert, A. Magnetic and transport properties of metallic multilayers. Mater. Sci. Forum 59–60, 439–480 (1990).This work provides a theoretical description of the mechanism that underlies DMI generated at the interface between a ferromagnetic layer and a strong SOC metal.

    Google Scholar 

  11. Bode, M. et al. Chiral magnetic order at surfaces driven by inversion asymmetry. Nature 447, 190–193 (2007).This paper represents the first identified observation of interfacial DMI-induced spin modulations in ultrathin magnetic films.

    Article  CAS  ADS  PubMed  Google Scholar 

  12. LaShell, S., McDougall, B. A. & Jensen, E. Spin splitting of an Au(111) surface state band observed with angle resolved photoelectron spectroscopy. Phys. Rev. Lett. 77, 3419–3422 (1996)

    Article  CAS  ADS  PubMed  Google Scholar 

  13. Nechaev, I. A. et al. Hole dynamics in a two-dimensional spin–orbit coupled electron system: theoretical and experimental study of the Au(111) surface state. Phys. Rev. B 80, 113402 (2009)

    Article  ADS  CAS  Google Scholar 

  14. Ast, C. R. et al. Giant spin splitting through surface alloying. Phys. Rev. Lett. 98, 186807 (2007)

    Article  ADS  CAS  PubMed  Google Scholar 

  15. Bernevig, B. A., Hughes, T. L. & Zhang, S.-C. Quantum spin Hall effect and topological phase transition in HgTe quantum wells. Science 314, 1757–1761 (2006)

    Article  CAS  ADS  PubMed  Google Scholar 

  16. König, M. et al. Quantum spin Hall insulator state in HgTe quantum wells. Science 318, 766–770 (2007)

    Article  ADS  CAS  PubMed  Google Scholar 

  17. Fu, L., Kane, C. L. & Mele, E. J. Topological insulators in three dimensions. Phys. Rev. Lett. 98, 106803 (2007)

    Article  ADS  CAS  PubMed  Google Scholar 

  18. Hasan, M. Z. & Kane, C. L. Colloquium: Topological insulators. Rev. Mod. Phys. 82, 3045–3067 (2010)

    Article  CAS  ADS  Google Scholar 

  19. Hsieh, D. et al. A topological Dirac insulator in a quantum spin Hall phase. Nature 452, 970–974 (2008)

    Article  CAS  ADS  PubMed  Google Scholar 

  20. Hsieh, D. et al. A tunable topological insulator in the spin helical Dirac transport regime. Nature 460, 1101–1105 (2009).A single-Dirac-cone topological insulator with spin–momentum locking at room temperature and a tunable chemical potential is demonstrated for the first time.

    Article  CAS  ADS  PubMed  Google Scholar 

  21. Checkelsky, J. G., Hor, Y., Cava, R. J. & Ong, N. Bulk band gap and surface state conduction observed in voltage-tuned crystals of the topological insulator Bi2Se3 . Phys. Rev. Lett. 106, 196801 (2011)

    Article  CAS  ADS  PubMed  Google Scholar 

  22. Beidenkopf, H. et al. Spatial fluctuations of helical Dirac fermions on the surface of topological insulators. Nat. Phys. 7, 939–943 (2011)

    Article  CAS  Google Scholar 

  23. Brüne, C. et al. Quantum Hall effect from the topological surface states of strained bulk HgTe. Phys. Rev. Lett. 106, 126803 (2011)

    Article  ADS  CAS  PubMed  Google Scholar 

  24. McIver, J. W., Hsieh, D., Steinberg, H., Jarillo-Herrero, P. & Gedik, N. Control over topological insulator photocurrents with light polarization. Nat. Nanotechnol. 7, 96–100 (2011)

    Article  CAS  ADS  PubMed  Google Scholar 

  25. Chen, Y. L. et al. Massive Dirac fermion on the surface of a magnetically doped topological insulator. Science 329, 659–662 (2010)

    Article  CAS  ADS  PubMed  Google Scholar 

  26. Xu, S.-Y. et al. Hedgehog spin texture and Berry’s phase tuning in a magnetic topological insulator. Nat. Phys. 8, 616–622 (2012)

    Article  CAS  Google Scholar 

  27. Chang, C.-Z. et al. Experimental observation of the quantum anomalous Hall effect in a magnetic topological insulator. Science 340, 167–170 (2013)

    Article  CAS  ADS  PubMed  Google Scholar 

  28. Kondou, K. et al. Fermi-level-dependent charge-to-spin current conversion by Dirac surface state of topological insulators. Nat. Phys. 12, 1027–1031 (2016)

    Article  CAS  Google Scholar 

  29. Rojas Sánchez, J. C. et al. Spin-to-charge conversion using Rashba coupling at the interface between non-magnetic materials. Nat. Commun. 4, 2944 (2013)

    Article  ADS  CAS  Google Scholar 

  30. Shen, K., Vignale, G. & Raimondi, R. Microscopic theory of the inverse Edelstein effect. Phys. Rev. Lett. 112, 096601 (2014)

    Article  ADS  CAS  PubMed  Google Scholar 

  31. Rojas-Sánchez, J.-C. et al. Spin to charge conversion at room temperature by spin pumping into a new type of topological insulator: α-Sn films. Phys. Rev. Lett. 116, 096602 (2016).Highly efficient spin-to-charge conversion in a topological insulator is observed at room temperature.

    Article  ADS  CAS  PubMed  Google Scholar 

  32. Mellnik, A. R. et al. Spin-transfer torque generated by a topological insulator. Nature 511, 449–451 (2014)

    Article  CAS  ADS  PubMed  Google Scholar 

  33. Fan, Y. et al. Magnetization switching through giant spin–orbit torque in a magnetically doped topological insulator heterostructure. Nat. Mater. 13, 699–704 (2014)

    Article  CAS  ADS  PubMed  Google Scholar 

  34. Li, C. H. et al. Electrical detection of charge-current-induced spin polarization due to spin–momentum locking in Bi2Se3 . Nat. Nanotechnol. 9, 218–224 (2014).Spin polarisation induced by a charge current in the surface states of a single-Dirac-cone topological insulator is conclusively demonstrated.

    Article  CAS  ADS  PubMed  Google Scholar 

  35. Wang, H. et al. Surface-state-dominated spin–charge current conversion in topological-insulator–ferromagnetic-insulator heterostructures. Phys. Rev. Lett. 117, 076601 (2016)

    Article  ADS  CAS  PubMed  Google Scholar 

  36. Shiomi, Y. et al. Spin–electricity conversion induced by spin injection into topological insulators. Phys. Rev. Lett. 113, 196601 (2014)

    Article  CAS  ADS  PubMed  Google Scholar 

  37. Nomura, A., Tashiro, T., Nakayama, H. & Ando, K. Temperature dependence of inverse Rashba–Edelstein effect at metallic interface. Appl. Phys. Lett. 106, 212403 (2015)

    Article  ADS  CAS  Google Scholar 

  38. Lesne, E. et al. Highly efficient and tunable spin-to-charge conversion through Rashba coupling at oxide interfaces. Nat. Mater. http://www.dx.doi.org/10.1038/nmat4726 (2016)

  39. Zhang, J. et al. Band structure engineering in (Bi1−xSbx)2Te3 ternary topological insulators. Nat. Commun. 2, 574 (2011)

    Article  ADS  CAS  PubMed  Google Scholar 

  40. Wang, Z. F. et al. Creation of helical Dirac fermions by interfacing two gapped systems of ordinary fermions. Nat. Commun. 4, 1384 (2013)

    Article  CAS  ADS  PubMed  Google Scholar 

  41. He, K. et al. Crossover of the three-dimensional topological insulator Bi2Se3 to the two-dimensional limit. Nat. Phys. 6, 584–588 (2010)

    Article  CAS  Google Scholar 

  42. Soumyanarayanan, A. & Hoffman, J. E. Momentum-resolved STM studies of Rashba-split surface states on the topological semimetal Sb. J. Electron Spectrosc. Relat. Phenom. 201, 66–73 (2015)

    Article  CAS  Google Scholar 

  43. Wang, J., Chen, X., Zhu, B. & Zhang, S. Topological p–n junction. Phys. Rev. B 85, 235131 (2012)

    Article  ADS  CAS  Google Scholar 

  44. Castro Neto, A. H., Guinea, F., Peres, N. M. R., Novoselov, K. S. & Geim, A. K. The electronic properties of graphene. Rev. Mod. Phys. 81, 109–162 (2009)

    Article  CAS  ADS  Google Scholar 

  45. Castro Neto, A. H. & Guinea, F. Impurity-induced spin–orbit coupling in graphene. Phys. Rev. Lett. 103, 026804 (2009)

    Article  CAS  ADS  PubMed  Google Scholar 

  46. Gmitra, M., Konschuh, S., Ertler, C., Ambrosch-Draxl, C. & Fabian, J. Band-structure topologies of graphene: spin–orbit coupling effects from first principles. Phys. Rev. B 80, 235431 (2009)

    Article  ADS  CAS  Google Scholar 

  47. Marchenko, D. et al. Giant Rashba splitting in graphene due to hybridization with gold. Nat. Commun. 3, 1232 (2012).This paper reports the first demonstration of large SOC enhancement in graphene induced by hybridization with underlying metal.

    Article  CAS  ADS  PubMed  Google Scholar 

  48. Rashba, E. I. Graphene with structure-induced spin–orbit coupling: spin-polarized states, spin zero modes, and quantum Hall effect. Phys. Rev. B 79, 161409 (2009)

    Article  ADS  CAS  Google Scholar 

  49. Ferreira, A., Rappoport, T. G., Cazalilla, M. A. & Castro Neto, A. H. Extrinsic spin Hall effect induced by resonant skew scattering in graphene. Phys. Rev. Lett. 112, 066601 (2014)

    Article  ADS  CAS  PubMed  Google Scholar 

  50. Mendes, J. B. S. et al. Spin-current to charge-current conversion and magnetoresistance in a hybrid structure of graphene and yttrium iron garnet. Phys. Rev. Lett. 115, 226601 (2015)

    Article  CAS  ADS  PubMed  Google Scholar 

  51. Balakrishnan, J., Kok Wai Koon, G., Jaiswal, M., Castro Neto, A. H. & Özyilmaz, B. Colossal enhancement of spin–orbit coupling in weakly hydrogenated graphene. Nat. Phys. 9, 284–287 (2013)

    Article  CAS  Google Scholar 

  52. Yankowitz, M., McKenzie, D. & LeRoy, B. J. Local spectroscopic characterization of spin and layer polarization in WSe2 . Phys. Rev. Lett. 115, 136803 (2015)

    Article  ADS  CAS  PubMed  Google Scholar 

  53. Cheng, C. et al. Direct observation of spin-to-charge conversion in MoS2 monolayer with spin pumping. Preprint at https://arxiv.org/abs/1510.03451 (2016)

  54. Wang, Z. et al. Strong interface-induced spin–orbit interaction in graphene on WS2 . Nat. Commun. 6, 8339 (2015)

    Article  CAS  ADS  PubMed  Google Scholar 

  55. Vaklinova, K., Hoyer, A., Burghard, M. & Kern, K. Current-induced spin polarization in topological insulator–graphene heterostructures. Nano Lett. 16, 2595–2602 (2016)

    Article  CAS  ADS  PubMed  Google Scholar 

  56. Bogdanov, A. & Hubert, A. Thermodynamically stable magnetic vortex states in magnetic crystals. J. Magn. Magn. Mater. 138, 255–269 (1994)

    Article  CAS  ADS  Google Scholar 

  57. Bogdanov, A. N. & Rößler, U. K. Chiral symmetry breaking in magnetic thin films and multilayers. Phys. Rev. Lett. 87, 037203 (2001).This work provides the first theoretical prediction and description of magnetic skyrmions in thin films.

    Article  CAS  ADS  PubMed  Google Scholar 

  58. Mühlbauer, S. et al. Skyrmion lattice in a chiral magnet. Science 323, 915–919 (2009)

    Article  ADS  CAS  PubMed  Google Scholar 

  59. Yu, X.-Z. et al. Real-space observation of a two-dimensional skyrmion crystal. Nature 465, 901–904 (2010)

    Article  CAS  ADS  PubMed  Google Scholar 

  60. Nagaosa, N. & Tokura, Y. Topological properties and dynamics of magnetic skyrmions. Nat. Nanotechnol. 8, 899–911 (2013)

    Article  CAS  ADS  PubMed  Google Scholar 

  61. Heinze, S. et al. Spontaneous atomic-scale magnetic skyrmion lattice in two dimensions. Nat. Phys. 7, 713–718 (2011)

    Article  CAS  Google Scholar 

  62. Romming, N. et al. Writing and deleting single magnetic skyrmions. Science 341, 636–639 (2013).This paper reports the first observation of isolated, 8-nm skyrmions in an ultrathin magnetic film, and demonstrates the creation and deletion of skyrmions.

    Article  CAS  ADS  PubMed  Google Scholar 

  63. Heide, M., Bihlmayer, G. & Blügel, S. Dzyaloshinskii–Moriya interaction accounting for the orientation of magnetic domains in ultrathin films: Fe/W(110). Phys. Rev. B 78, 140403 (2008)

    Article  ADS  CAS  Google Scholar 

  64. Meckler, S. et al. Real-space observation of a right-rotating inhomogeneous cycloidal spin spiral by spin-polarized scanning tunneling microscopy in a triple axes vector magnet. Phys. Rev. Lett. 103, 157201 (2009)

    Article  CAS  ADS  PubMed  Google Scholar 

  65. Chen, G. et al. Tailoring the chirality of magnetic domain walls by interface engineering. Nat. Commun. 4, 2671 (2013)

    Article  ADS  CAS  PubMed  Google Scholar 

  66. Emori, S., Bauer, U., Ahn, S.-M., Martinez, E. & Beach, G. S. D. Current-driven dynamics of chiral ferromagnetic domain walls. Nat. Mater. 12, 611–616 (2013)

    Article  CAS  ADS  PubMed  Google Scholar 

  67. Moreau-Luchaire, C. et al. Additive interfacial chiral interaction in multilayers for stabilization of small individual skyrmions at room temperature. Nat. Nanotechnol. 11, 444–448 (2016).30-nm skyrmions in sputtered multilayer films are observed at room temperature.

    Article  CAS  ADS  PubMed  Google Scholar 

  68. Woo, S. et al. Observation of room-temperature magnetic skyrmions and their current-driven dynamics in ultrathin metallic ferromagnets. Nat. Mater. 15, 501–506 (2016)

    Article  CAS  ADS  PubMed  Google Scholar 

  69. Jiang, W. et al. Blowing magnetic skyrmion bubbles. Science 349, 283–286 (2015)

    Article  CAS  ADS  PubMed  Google Scholar 

  70. Fert, A., Cros, V. & Sampaio, J. Skyrmions on the track. Nat. Nanotechnol. 8, 152–156 (2013)

    Article  CAS  ADS  PubMed  Google Scholar 

  71. Dupé, B., Hoffmann, M., Paillard, C. & Heinze, S. Tailoring magnetic skyrmions in ultra-thin transition metal films. Nat. Commun. 5, 4030 (2014)

    Article  ADS  CAS  PubMed  Google Scholar 

  72. Yang, H., Thiaville, A., Rohart, S., Fert, A. & Chshiev, M. Anatomy of Dzyaloshinskii–Moriya interaction at Co/Pt interfaces. Phys. Rev. Lett. 115, 267210 (2015)

    Article  ADS  CAS  PubMed  Google Scholar 

  73. Cho, J. et al. Thickness dependence of the interfacial Dzyaloshinskii–Moriya interaction in inversion symmetry broken systems. Nat. Commun. 6, 7635 (2015)

    Article  ADS  PubMed  Google Scholar 

  74. Rohart, S. & Thiaville, A. Skyrmion confinement in ultrathin film nanostructures in the presence of Dzyaloshinskii–Moriya interaction. Phys. Rev. B 88, 184422 (2013)

    Article  ADS  CAS  Google Scholar 

  75. Sampaio, J., Cros, V., Rohart, S., Thiaville, A. & Fert, A. Nucleation, stability and current-induced motion of isolated magnetic skyrmions in nanostructures. Nat. Nanotechnol. 8, 839–844 (2013)

    Article  CAS  ADS  PubMed  Google Scholar 

  76. Hagemeister, J., Romming, N., von Bergmann, K., Vedmedenko, E. Y. & Wiesendanger, R. Stability of single skyrmionic bits. Nat. Commun. 6, 8455 (2015)

    Article  CAS  ADS  PubMed  Google Scholar 

  77. Chen, G., Mascaraque, A., N’Diaye, A. T. & Schmid, A. K. Room temperature skyrmion ground state stabilized through interlayer exchange coupling. Appl. Phys. Lett. 106, 242404 (2015)

    Article  ADS  CAS  Google Scholar 

  78. Boulle, O. et al. Room-temperature chiral magnetic skyrmions in ultrathin magnetic nanostructures. Nat. Nanotechnol. 11, 449–454 (2016)

    Article  CAS  ADS  PubMed  Google Scholar 

  79. Gilbert, D. A. et al. Realization of ground-state artificial skyrmion lattices at room temperature. Nat. Commun. 6, 9462 (2015)

    Article  CAS  Google Scholar 

  80. Soumyanarayanan, A. et al. Tunable room temperature magnetic skyrmions in Ir/Fe/Co/Pt multilayers. Preprint at https://arxiv.org/abs/1606.06034 (2016)

  81. Neubauer, A. et al. Topological Hall effect in the A phase of MnSi. Phys. Rev. Lett. 102, 186602 (2009)

    Article  CAS  ADS  PubMed  Google Scholar 

  82. Schulz, T. et al. Emergent electrodynamics of skyrmions in a chiral magnet. Nat. Phys. 8, 301–304 (2012)

    Article  CAS  Google Scholar 

  83. Huang, S. X. & Chien, C. L. Extended skyrmion phase in epitaxial FeGe(111) thin films. Phys. Rev. Lett. 108, 267201 (2012)

    Article  CAS  ADS  PubMed  Google Scholar 

  84. Iwasaki, J., Mochizuki, M. & Nagaosa, N. Current-induced skyrmion dynamics in constricted geometries. Nat. Nanotechnol. 8, 742–747 (2013)

    Article  CAS  ADS  PubMed  Google Scholar 

  85. Heinonen, O., Jiang, W., Somaily, H., te Velthuis, S. G. E. & Hoffmann, A. Generation of magnetic skyrmion bubbles by inhomogeneous spin Hall currents. Phys. Rev. B 93, 094407 (2016)

    Article  ADS  CAS  Google Scholar 

  86. Tomasello, R. et al. A strategy for the design of skyrmion racetrack memories. Sci. Rep. 4, 6784 (2014)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Kang, W. et al. Voltage controlled magnetic skyrmion motion for racetrack memory. Sci. Rep. 6, 23164 (2016)

    Article  CAS  ADS  PubMed  PubMed Central  Google Scholar 

  88. Parkin, S. S. P., Hayashi, M. & Thomas, L. Magnetic domain-wall racetrack memory. Science 320, 190–194 (2008)

    Article  CAS  ADS  PubMed  Google Scholar 

  89. Yang, S.-H., Ryu, K.-S. & Parkin, S. Domain-wall velocities of up to 750 m s−1 driven by exchange-coupling torque in synthetic antiferromagnets. Nat. Nanotechnol. 10, 221–226 (2015)

    Article  CAS  ADS  PubMed  Google Scholar 

  90. Khvalkovskiy, A. V. et al. Matching domain-wall configuration and spin–orbit torques for efficient domain-wall motion. Phys. Rev. B 87, 020402 (2013)

    Article  ADS  CAS  Google Scholar 

  91. Moore, T. A. et al. High domain wall velocities induced by current in ultrathin Pt/Co/AlOx wires with perpendicular magnetic anisotropy. Appl. Phys. Lett. 93, 262504 (2008)

    Article  ADS  CAS  Google Scholar 

  92. Thiaville, A., Rohart, S., Jué, É., Cros, V. & Fert, A. Dynamics of Dzyaloshinskii domain walls in ultrathin magnetic films. Europhys. Lett. 100, 57002 (2012)

    Article  ADS  CAS  Google Scholar 

  93. Fukami, S. et al. Low-current perpendicular domain wall motion cell for scalable high-speed MRAM. In 2009 Symposium on VLSI Technology 230–231 (IEEE, 2009)

  94. Zhang, X., Zhou, Y., Ezawa, M., Zhao, G. P. & Zhao, W. Magnetic skyrmion transistor: skyrmion motion in a voltage-gated nanotrack. Sci. Rep. 5, 11369 (2015)

    Article  ADS  PubMed  PubMed Central  Google Scholar 

  95. Finocchio, G. et al. Skyrmion based microwave detectors and harvesting. Appl. Phys. Lett. 107, 262401 (2015)

    Article  ADS  CAS  Google Scholar 

  96. Manipatruni, S., Nikonov, D. E. & Young, I. A. Spin–orbit logic with magnetoelectric nodes: a scalable charge mediated nonvolatile spintronic logic. Preprint at https://arxiv.org/abs/1512.05428 (2015)

  97. Mahfouzi, F., Nikolic´, B. K., Chen, S.-H. & Chang, C.-R. Microwave-driven ferromagnet–topological-insulator heterostructures: the prospect for giant spin battery effect and quantized charge pump devices. Phys. Rev. B 82, 195440 (2010)

    Article  ADS  CAS  Google Scholar 

  98. Cahaya, A. B., Tretiakov, O. A. & Bauer, G. E. W. Spin Seebeck power generators. Appl. Phys. Lett. 104, 042402 (2014)

    Article  ADS  CAS  Google Scholar 

  99. Ilan, R., De Juan, F. & Moore, J. E. Spin-based Mach–Zehnder Interferometry in topological insulator p–n junctions. Phys. Rev. Lett. 115, 096802 (2015)

    Article  ADS  CAS  PubMed  Google Scholar 

  100. von Bergmann, K. Magnetic bubbles with a twist. Science 349, 234–235 (2015)

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

We are grateful to A.K.C. Tan and S. M. Rezende for their help preparing illustrations. We acknowledge support from the Singapore Ministry of Education (MOE), an Academic Research Fund Tier 2 (Reference No. MOE2014-T2-1-050), the National Research Foundation (NRF) of Singapore, a NRF Investigatorship (Reference No. NRF-NRFI2015-04) and the A*STAR Pharos Fund (1527400026), Singapore; and the Centre National de la Recherche Scientifique (CNRS), France, for funding this work.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed equally to this work.

Corresponding authors

Correspondence to Albert Fert or Christos Panagopoulos.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

PowerPoint slides

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Soumyanarayanan, A., Reyren, N., Fert, A. et al. Emergent phenomena induced by spin–orbit coupling at surfaces and interfaces. Nature 539, 509–517 (2016). https://doi.org/10.1038/nature19820

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nature19820

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing