Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Evolution of global temperature over the past two million years

Abstract

Reconstructions of Earth’s past climate strongly influence our understanding of the dynamics and sensitivity of the climate system. Yet global temperature has been reconstructed for only a few isolated windows of time1,2, and continuous reconstructions across glacial cycles remain elusive. Here I present a spatially weighted proxy reconstruction of global temperature over the past 2 million years estimated from a multi-proxy database of over 20,000 sea surface temperature point reconstructions. Global temperature gradually cooled until roughly 1.2 million years ago and cooling then stalled until the present. The cooling trend probably stalled before the beginning of the mid-Pleistocene transition3, and pre-dated the increase in the maximum size of ice sheets around 0.9 million years ago4,5,6. Thus, global cooling may have been a pre-condition for, but probably is not the sole causal mechanism of, the shift to quasi-100,000-year glacial cycles at the mid-Pleistocene transition. Over the past 800,000 years, polar amplification (the amplification of temperature change at the poles relative to global temperature change) has been stable over time, and global temperature and atmospheric greenhouse gas concentrations have been closely coupled across glacial cycles. A comparison of the new temperature reconstruction with radiative forcing from greenhouse gases estimates an Earth system sensitivity of 9 degrees Celsius (range 7 to 13 degrees Celsius, 95 per cent credible interval) change in global average surface temperature per doubling of atmospheric carbon dioxide over millennium timescales. This result suggests that stabilization at today’s greenhouse gas levels may already commit Earth to an eventual total warming of 5 degrees Celsius (range 3 to 7 degrees Celsius, 95 per cent credible interval) over the next few millennia as ice sheets, vegetation and atmospheric dust continue to respond to global warming.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Reconstruction of global average surface temperature (GAST) over the past 2 million years compared to other key palaeoclimate variables.
Figure 2: Relationship of changes in GAST to changes in Antarctic temperature and GHG radiative forcing over the past 800 kyr.
Figure 3: Probabilistic breakpoint analysis of global temperature trends over the past 2 million years.

Similar content being viewed by others

References

  1. Masson-Delmotte, V. et al. in Climate Change 2013: The Physical Science Basis Ch. 5 (eds Stocker, T. F. et al.) 383–464 (Cambridge Univ. Press, 2013)

  2. Rohling, E. J. et al. Making sense of palaeoclimate sensitivity. Nature 491, 683–691 (2012)

    Article  ADS  CAS  Google Scholar 

  3. Clark, P. U. et al. The middle Pleistocene transition: characteristics, mechanisms, and implications for long-term changes in atmospheric pCO2 . Quat. Sci. Rev. 25, 3150–3184 (2006)

    Article  ADS  Google Scholar 

  4. Elderfield, H. et al. Evolution of ocean temperature and ice volume through the Mid-Pleistocene climate transition. Science 337, 704–709 (2012)

    Article  ADS  CAS  PubMed  Google Scholar 

  5. Rohling, E. J. et al. Sea-level and deep-sea-temperature variability over the past 5.3 million years. Nature 508, 477–482 (2014)

    Article  ADS  CAS  PubMed  Google Scholar 

  6. Bates, S. L., Siddall, M. & Waelbroeck, C. Hydrographic variations in deep ocean temperature over the mid-Pleistocene transition. Quat. Sci. Rev. 88, 147–158 (2014)

    Article  ADS  Google Scholar 

  7. Rohling, E., Medina-Elizalde, M., Shepherd, J., Siddall, M. & Stanford, J. Sea surface and high-latitude temperature sensitivity to radiative forcing of climate over several glacial cycles. J. Clim. 25, 1635–1656 (2012)

    Article  ADS  Google Scholar 

  8. Shakun, J. D. et al. Global warming preceded by increasing carbon dioxide concentrations during the last deglaciation. Nature 484, 49–54 (2012)

    Article  ADS  CAS  PubMed  Google Scholar 

  9. Masson-Delmotte, V. et al. EPICA Dome C record of glacial and interglacial intensities. Quat. Sci. Rev. 29, 113–128 (2010)

    Article  ADS  Google Scholar 

  10. Zachos, J., Pagani, M., Sloan, L., Thomas, E. & Billups, K. Trends, rhythms, and aberrations in global climate 65 Ma to present. Science 292, 686–693 (2001)

    Article  ADS  CAS  PubMed  Google Scholar 

  11. Hansen, J., Sato, M., Russell, G. & Kharecha, P. Climate sensitivity, sea level and atmospheric carbon dioxide. Phil. Trans. R. Soc. Lond. A 371, (2013)

  12. Chylek, P. & Lohmann, U. Aerosol radiative forcing and climate sensitivity deduced from the last glacial maximum to Holocene transition. Geophys. Res. Lett. 35, L04804 (2008)

    ADS  Google Scholar 

  13. van de Wal, R. S. W., de Boer, B., Lourens, L. J., Kohler, P. & Bintanja, R. Reconstruction of a continuous high-resolution CO2 record over the past 20 million years. Clim. Past 7, 1459–1469 (2011)

    Article  Google Scholar 

  14. Parrenin, F. et al. Synchronous change of atmospheric CO2 and Antarctic temperature during the last deglacial warming. Science 339, 1060–1063 (2013)

    Article  ADS  CAS  PubMed  Google Scholar 

  15. Hansen, J. et al. Target atmospheric CO2: where should humanity aim? The Open Atmos. Sci. J. 2, 217–231 (2008)

    CAS  Google Scholar 

  16. Masson-Delmotte, V. et al. Past and future polar amplification of climate change: climate model intercomparisons and ice-core constraints. Clim. Dyn. 26, 513–529 (2006)

    Article  Google Scholar 

  17. Köhler, P. et al. What caused Earth’s temperature variations during the last 800,000 years? Data-based evidence on radiative forcing and constraints on climate sensitivity. Quat. Sci. Rev. 29, 129–145 (2010)

    Article  ADS  Google Scholar 

  18. Bereiter, B. et al. Revision of the EPICA Dome C CO2 record from 800 to 600kyr before present. Geophys. Res. Lett. 42, 542–549 (2015)

    Article  ADS  Google Scholar 

  19. Pagani, M., Liu, Z., LaRiviere, J. & Ravelo, A. C. High Earth-system climate sensitivity determined from Pliocene carbon dioxide concentrations. Nat. Geosci. 3, 27–30 (2010)

    Article  ADS  CAS  Google Scholar 

  20. Lunt, D. J. Earth system sensitivity inferred from Pliocene modelling and data. Nat. Geosci. 3, 60–64 (2010)

    Article  ADS  CAS  Google Scholar 

  21. Raymo, M. E. The timing of major climate terminations. Paleoceanography 12, 577–585 (1997)

    Article  ADS  Google Scholar 

  22. Huybers, P. Early Pleistocene glacial cycles and the integrated summer insolation forcing. Science 313, 508–511 (2006)

    Article  ADS  CAS  PubMed  Google Scholar 

  23. Huybers, P. & Wunsch, C. A depth-derived Pleistocene age model: uncertainty estimates, sedimentation variability, and nonlinear climate change. Paleoceanography 19, PA1028 (2004)

    Article  ADS  Google Scholar 

  24. Imbrie, J. Z., Imbrie-Moore, A. & Lisiecki, L. E. A phase-space model for Pleistocene ice volume. Earth Planet. Sci. Lett. 307, 94–102 (2011)

    Article  ADS  CAS  Google Scholar 

  25. McClymont, E. L., Sosdian, S. M., Rosell-Melé, A. & Rosenthal, Y. Pleistocene sea-surface temperature evolution: early cooling, delayed glacial intensification, and implications for the mid-Pleistocene climate transition. Earth Sci. Rev. 123, 173–193 (2013)

    Article  ADS  CAS  Google Scholar 

  26. Tziperman, E. & Gildor, H. On the mid-Pleistocene transition to 100-kyr glacial cycles and the asymmetry between glaciation and deglaciation times. Paleoceanography 18, PA000627 (2003)

    Article  Google Scholar 

  27. Abe-Ouchi, A. et al. Insolation-driven 100,000-year glacial cycles and hysteresis of ice-sheet volume. Nature 500, 190–193 (2013)

    Article  ADS  CAS  PubMed  Google Scholar 

  28. Ganopolski, A. & Calov, R. The role of orbital forcing, carbon dioxide and regolith in 100 kyr glacial cycles. Clim. Past 7, 1415–1425 (2011)

    Article  Google Scholar 

  29. Martínez-Garcia, A., Rosell-Melé, A., McClymont, E. L., Gersonde, R. & Haug, G. H. Subpolar link to the emergence of the modern Equatorial Pacific Cold Tongue. Science 328, 1550–1553 (2010)

    Article  ADS  CAS  PubMed  Google Scholar 

  30. Lisiecki, L. E. & Raymo, M. E. A Pliocene-Pleistocene stack of 57 globally distributed benthic δ18O records. Paleoceanography 20, PA1003 (2005)

    ADS  Google Scholar 

  31. Braconnot, P. et al. Results of PMIP2 coupled simulations of the Mid-Holocene and Last Glacial Maximum — Part 1: experiments and large-scale features. Clim. Past 3, 261–277 (2007)

    Article  Google Scholar 

  32. Harrison, S. P. et al. Climate model benchmarking with glacial and mid-Holocene climates. Clim. Dyn. 43, 671–688 (2014)

    Article  Google Scholar 

  33. Hargreaves, J. C., Annan, J. D., Yoshimori, M. & Abe-Ouchi, A. Can the Last Glacial Maximum constrain climate sensitivity? Geophys. Res. Lett. 39, L24702 (2012)

    Article  ADS  Google Scholar 

  34. Mix, A. C., Bard, E. & Schneider, R. Environmental processes of the ice age: land, oceans, glaciers (EPILOG). Quat. Sci. Rev. 20, 627–657 (2001)

    Article  ADS  Google Scholar 

  35. Müller, P. J., Kirst, G., Ruhland, G., Von Storch, I. & Rossel-Mele, A. Calibration of the alkenone paleotemperature index U37K' based on core-tops from the eastern South Atlantic and the global ocean (60°N-60°S). Geochim. Cosmochim. Acta 62, 1757–1772 (1998)

    Article  ADS  Google Scholar 

  36. Herbert, T. D. Review of alkenone calibrations (culture, water column, and sediments). Geochem. Geophys. Geosyst. 2, http://dx.doi.org/10.1029/2000GC000055 (2001)

  37. Mashiotta, T. A., Lea, D. W. & Spero, H. J. Glacial-interglacial changes in Subantarctic sea surface temperature and δ18O-water using foraminiferal Mg. Earth Planet. Sci. Lett. 170, 417–432 (1999)

    Article  ADS  CAS  Google Scholar 

  38. Elderfield, H. & Ganssen, G. Past temperature and δ18O of surface ocean waters inferred from foraminiferal Mg/Ca ratios. Nature 405, 442–445 (2000)

    Article  ADS  CAS  PubMed  Google Scholar 

  39. Barrows, T. T., Juggins, S., De Deckker, P., Calvo, E. & Pelejero, C. Long-term sea surface temperature and climate change in the Australian-New Zealand region. Paleoceanography 22, PA2215 (2007)

    Article  ADS  Google Scholar 

  40. Haam, E. & Huybers, P. A test for the presence of covariance between time-uncertain series of data with application to the Dongge Cave speleothem and atmospheric radiocarbon records. Paleoceanography 25, PA001713 (2010)

    Article  Google Scholar 

  41. Lin, L., Khider, D., Lisiecki, L. E. & Lawrence, C. E. Probabilistic sequence alignment of stratigraphic records. Paleoceanography 29, 976–989 (2014)

    Article  ADS  Google Scholar 

  42. Martinson, D. G. et al. Age dating and the orbital theory of the ice ages: development of a high-resolution 0 to 300000-year chronostratigraphy. Quat. Res. 27, 1–29 (1987)

    Article  CAS  Google Scholar 

  43. Huybers, P. Glacial variability over the last two million years: an extended depth-derived age model, continuous obliquity pacing, and the Pleistocene progression. Quat. Sci. Rev. 26, 37–55 (2007)

    Article  ADS  Google Scholar 

  44. Haywood, A. M. Large-scale features of Pliocene climate: results from the Pliocene Model Intercomparison Project. Clim. Past 9, 191–209 (2013)

    Article  Google Scholar 

  45. Bell, D. B., Jung, S. J. A. & Kroon, D. The Plio-Pleistocene development of Atlantic deep-water circulation and its influence on climate trends. Quat. Sci. Rev. 123, 265–282 (2015)

    Article  ADS  Google Scholar 

  46. Kageyama, M. et al. The Last Glacial Maximum climate over Europe and western Siberia: a PMIP comparison between models and data. Clim. Dyn. 17, 23–43 (2001)

    Article  Google Scholar 

  47. Ballantyne, A. P., Lavine, M., Crowley, T. J., Liu, J. & Baker, P. B. Meta-analysis of tropical surface temperatures during the Last Glacial Maximum. Geophys. Res. Lett. 32, L05712 (2005)

    Article  ADS  Google Scholar 

  48. Schneider von Deimling, T., Ganopolski, A., Held, H. & Rahmstorf, S. How cold was the Last Glacial Maximum? Geophys. Res. Lett. 33, L14709 (2006)

    Article  ADS  CAS  Google Scholar 

  49. Kopp, R. E., Simons, F. J., Mitrovica, J. X., Maloof, A. C. & Oppenheimer, M. Probabilistic assessment of sea level during the last interglacial stage. Nature 462, 863–867 (2009)

    Article  ADS  CAS  PubMed  Google Scholar 

  50. Sime, L. C., Wolff, E. W., Oliver, K. I. C. & Tindall, J. C. Evidence for warmer interglacials in East Antarctic ice cores. Nature 462, 342–345 (2009)

    Article  ADS  CAS  PubMed  Google Scholar 

  51. Turney, C. S. & Jones, R. T. Does the Agulhas Current amplify global temperatures during super-interglacials? J. Quat. Sci. 25, 839–843 (2010)

    Article  Google Scholar 

  52. Otto-Bliesner, B. L. et al. How warm was the last interglacial? New model–data comparisons. Phil. Trans. R. Soc. 371, http://dx.doi.org/10.1098/rsta.2013.0097 (2013)

  53. Venables, W. N. & Ripley, B. D. Modern Applied Statistics with S 4th edn (Springer, 2002)

  54. Loulergue, L. et al. Orbital and millennial-scale features of atmospheric CH4 over the past 800,000 years. Nature 453, 383–386 (2008)

    Article  ADS  CAS  PubMed  Google Scholar 

  55. Abraham, B. & Ledolter, J. Introduction to Regression Modeling (Duxbury Press, 2006)

  56. Honisch, B., Hemming, G., Archer, D., Siddal, M. & McManus, J. Atmospheric carbon dioxide concentration across the Mid-Pleistocene Transition. Science 324, 1551–1554 (2009)

    Article  ADS  CAS  PubMed  Google Scholar 

  57. Verbesselt, J., Hyndman, R., Newnham, G. & Culvenor, D. Detecting trend and seasonal changes in satellite image time series. Remote Sens. Environ. 114, 106–115 (2010)

    Article  ADS  Google Scholar 

  58. de Garidel-Thoron, T., Rosenthal, Y., Bassinot, F. & Beaufort, L. Stable sea surface temperatures in the western Pacific warm pool over the past 1.75 million years. Nature 433, 294–298 (2005)

    Article  ADS  CAS  PubMed  Google Scholar 

  59. Lea, D. W. The 100 000-yr cycle in tropical SST, greenhouse forcing, and climate sensitivity. J. Clim. 17, 2170–2179 (2004)

    Article  ADS  Google Scholar 

  60. Lea, D. W. et al. Paleoclimate history of Galapagos surface waters over the last 135,000yr. Quat. Sci. Rev. 25, 1152–1167 (2006)

    Article  ADS  Google Scholar 

  61. Medina-Elizalde, M. & Lea, D. W. The mid-Pleistocene transition in the tropical Pacific. Science 310, 1009–1012 (2005)

    Article  ADS  CAS  PubMed  Google Scholar 

  62. Mohtadi, M. et al. Late Pleistocene surface and thermocline conditions of the eastern tropical Indian Ocean. Quat. Sci. Rev. 29, 887–896 (2010)

    Article  ADS  Google Scholar 

  63. Nürnberg, D., Muller, A. & Schneider, R. R. Paleo-sea surface temperature calculations in the equatorial east Atlantic from Mg/Ca ratios in planktic foraminifera: A comparison to sea surface temperature estimates from U37K', oxygen isotopes, and foraminiferal transfer function. Paleoceanography 15, 124–134 (2000)

    Article  ADS  Google Scholar 

  64. Oppo, D. W. & Sun, Y. B. Amplitude and timing of sea-surface temperature change in the northern South China Sea: dynamic link to the East Asian monsoon. Geology 33, 785–788 (2005)

    Article  ADS  CAS  Google Scholar 

  65. Pahnke, K., Zahn, R., Elderfield, H. & Schulz, M. 340,000-year centennial-scale marine record of southern hemisphere climatic oscillation. Science 301, 948–952 (2003)

    Article  ADS  CAS  PubMed  Google Scholar 

  66. Rickaby, R. E. M. & Elderfield, H. Planktonic foraminiferal Cd/Ca: paleonutrients or paleotemperature? Paleoceanography 14, 293–303 (1999)

    Article  ADS  Google Scholar 

  67. Russon, T. et al. Inter-hemispheric asymmetry in the early Pleistocene Pacific warm pool. Geophys. Res. Lett. 37, L11601 (2010)

    Article  ADS  Google Scholar 

  68. Saraswat, R., Nigam, R., Weldeab, S., Mackensen, A. & Naidu, P. D. A first look at past sea surface temperatures in the equatorial Indian Ocean from Mg/Ca in foraminifera. Geophys. Res. Lett. 32, L24605 (2005)

    Article  ADS  CAS  Google Scholar 

  69. Wei, G. J., Deng, W. F., Liu, Y. & Li, X. H. High-resolution sea surface temperature records derived from foraminiferal Mg/Ca ratios during the last 260 ka in the northern South China Sea. Palaeogeogr. Palaeoclimatol. Palaeoecol. 250, 126–138 (2007)

    Article  Google Scholar 

  70. Weldeab, S., Lea, D. W., Schneider, R. R. & Andersen, N. 155,000 years of West African monsoon and ocean thermal evolution. Science 316, 1303–1307 (2007)

    Article  ADS  CAS  PubMed  Google Scholar 

  71. Brathauer, U. & Abelmann, A. Late Quaternary variations in sea surface temperatures and their relationship to orbital forcing recorded in the Southern Ocean (Atlantic sector). Paleoceanography 14, 135–148 (1999)

    Article  ADS  Google Scholar 

  72. Kandiano, E. S., Bauch, H. A. & Muller, A. Sea surface temperature variability in the North Atlantic during the last two glacial-interglacial cycles: comparison of faunal, oxygen isotopic, and Mg/Ca-derived records. Palaeogeogr. Palaeoclimatol. Palaeoecol. 204, 145–164 (2004)

    Article  Google Scholar 

  73. Labeyrie, L. et al. Hydrographic changes of the Southern Ocean (southeast Indian sector) over the last 230 kyr. Paleoceanography 11, 57–76 (1996)

    Article  ADS  Google Scholar 

  74. Pisias, N. G. & Mix, A. C. Spatial and temporal oceanographic variability of the eastern equatorial Pacific during the late Pleistocene: evidence from Radiolaria microfossils. Paleoceanography 12, 381–393 (1997)

    Article  ADS  Google Scholar 

  75. Weaver, P. P. E., Carter, L. & Neil, H. L. Response of surface water masses and circulation to Late Quaternary climate change east of New Zealand. Paleoceanography 13, 70–83 (1998)

    Article  ADS  Google Scholar 

  76. Weaver, P. P. E. et al. Combined coccolith, foraminiferal, and biomarker reconstruction of paleoceanographic conditions over the past 120 kyr in the northern North Atlantic (59°N, 23°W). Paleoceanography 14, 336–349 (1999)

    Article  ADS  Google Scholar 

  77. Bard, E. Climate shock — Abrupt changes over millennial time scales. Phys. Today 55, 32–38 (2002)

    Article  ADS  Google Scholar 

  78. Bard, E., Rostek, F. & Sonzogni, C. Interhemispheric synchrony of the last deglaciation inferred from alkenone palaeothermometry. Nature 385, 707–710 (1997)

    Article  ADS  CAS  Google Scholar 

  79. Clemens, S. C., Prell, W. L., Sun, Y., Liu, Z. & Chen, G. Southern Hemisphere forcing of Pliocene δ18O and the evolution of Indo-Asian monsoons. Paleoceanography 23, PA4210 (2008)

    Article  ADS  Google Scholar 

  80. Herbert, T. D., Peterson, L. C., Lawrence, K. T. & Liu, Z. Tropical ocean temperatures over the past 3.5 million years. Science 328, 1530–1534 (2010)

    Article  ADS  CAS  PubMed  Google Scholar 

  81. Dubois, N. et al. Millennial-scale variations in hydrography and biogeochemistry in the Eastern Equatorial Pacific over the last 100 kyr. Quat. Sci. Rev. 30, 210–223 (2011)

    Article  ADS  Google Scholar 

  82. Eglinton, G. et al. Molecular record of secular sea surface temperature changes on 100-year timescales for glacial terminations I, II and IV. Nature 356, 423–426 (1992)

    Article  ADS  Google Scholar 

  83. Horikawa, K., Minagawa, M., Murayama, M., Kato, Y. & Asahi, H. Spatial and temporal sea-surface temperatures in the eastern equatorial Pacific over the past 150 kyr. Geophys. Res. Lett. 33, L13605 (2006)

    Article  ADS  Google Scholar 

  84. Lawrence, K. T., Liu, Z. H. & Herbert, T. D. Evolution of the eastern tropical Pacific through Plio-Pleistocene glaciation. Science 312, 79–83 (2006)

    Article  ADS  CAS  PubMed  Google Scholar 

  85. Lawrence, K. T., Herbert, T. D., Brown, C. M., Raymo, M. E. & Haywood, A. M. High-amplitude variations in North Atlantic sea surface temperature during the early Pliocene warm period. Paleoceanography 24, PA2218 (2009)

    Article  ADS  Google Scholar 

  86. Müller, P. J., Cepek, M., Ruhland, G. & Schneider, R. R. Alkenone and coccolithophorid species changes in late Quaternary sediments from the Walvis Ridge: implications for the alkenone paleotemperature method. Palaeogeogr. Palaeoclimatol. Palaeoecol. 135, 71–96 (1997)

    Article  Google Scholar 

  87. Pahnke, K. & Sachs, J. P. Sea surface temperatures of southern midlatitudes 0-160 kyr BP. Paleoceanography 21, PA2003 (2006)

    Article  ADS  Google Scholar 

  88. Pelejero, C., Grimalt, J. O., Heilig, S., Kienast, M. & Wang, L. J. High-resolution UK37 temperature reconstructions in the South China Sea over the past 220 kyr. Paleoceanography 14, 224–231 (1999)

    Article  ADS  Google Scholar 

  89. Pelejero, C., Calvo, E., Barrows, T. T., Logan, G. A. & De Deckker, P. South Tasman Sea alkenone palaeothermometry over the last four glacial/interglacial cycles. Mar. Geol. 230, 73–86 (2006)

    Article  ADS  Google Scholar 

  90. Rostek, F., Bard, E., Beaufort, L., Sonzogni, C. & Ganssen, G. Sea surface temperature and productivity records for the past 240 kyr in the Arabian Sea. Deep-Sea Res. 44, 1461–1480 (1997)

    ADS  CAS  Google Scholar 

  91. Sachs, J. P. & Anderson, R. F. Fidelity of alkenone paleotemperatures in southern Cape Basin sediment drifts. Paleoceanography 18, 1082 (2003)

    Article  ADS  Google Scholar 

  92. Schneider, R. R., Muller, P. J. & Ruhland, G. Late Quaternary surface circulation in the east equatorial South Atlantic: evidence from alkenone sea surface temperatures. Paleoceanography 10, 197–219 (1995)

    Article  ADS  Google Scholar 

  93. Sicre, M. A. et al. Biomarker stratigraphic records over the last 150 kyears off the NW African coast at 25°N. Org. Geochem. 31, 577–588 (2000)

    Article  CAS  Google Scholar 

  94. Villanueva, J., Grimalt, J. O., Cortijo, E., Vidal, L. & Labeyrie, L. Assessment of sea surface temperature variations in the central North Atlantic using the alkenone unsaturation index U37 k'. Geochim. Cosmochim. Acta 62, 2421–2427 (1998)

    Article  ADS  CAS  Google Scholar 

  95. Yamamoto, M., Oba, T., Shimamune, J. & Ueshima, T. Orbital-scale anti-phase variation of sea surface temperature in mid-latitude North Pacific margins during the last 145,000 years. Geophys. Res. Lett. 31, L16311 (2004)

    Article  ADS  Google Scholar 

  96. Yamamoto, M., Yamamuro, M. & Tanaka, Y. The California current system during the last 136,000 years: response of the North Pacific High to precessional forcing. Quat. Sci. Rev. 26, 405–414 (2007)

    Article  ADS  Google Scholar 

  97. Zhao, M. X., Huang, C. Y., Wang, C. C. & Wei, G. J. A millennial-scale U37K' sea-surface temperature record from the South China Sea (8°N) over the last 150 kyr: monsoon and sea-level influence. Palaeogeogr. Palaeoclimatol. Palaeoecol. 236, 39–55 (2006)

    Article  Google Scholar 

  98. Masson-Delmotte, V. et al. Atmospheric science: GRIP deuterium excess reveals rapid and orbital-scale changes in Greenland moisture origin. Science 309, 118–121 (2005)

    Article  ADS  CAS  PubMed  Google Scholar 

  99. Masson-Delmotte, V. et al. Past temperature reconstructions from deep ice cores: relevance for future climate change. Clim. Past 2, 145–165 (2006)

    Article  Google Scholar 

Download references

Acknowledgements

I thank S. Schneider, C. Field, C. Tebaldi, R. Dunbar, K. Caldeira, C. Warshaw, H. Elderfield and R. Samworth for advice and feedback. I am indebted to many scientists for supplying their proxy data records (see Extended Data Tables 1–3), and to NOAA’s National Centers for Environmental Information and PANGAEA. This study was supported by a National Science Foundation Graduate Research Fellowship. The views expressed in this article are those of the author and do not necessarily reflect the views or policies of the US Environmental Protection Agency.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Carolyn W. Snyder.

Ethics declarations

Competing interests

The author declares no competing financial interests.

Additional information

Reviewer Information Nature thanks E. J. Rohling and the other anonymous reviewer(s) for their contribution to the peer review of this work.

Extended data figures and tables

Extended Data Figure 1 Spatial distribution of the SST proxy reconstructions used in this analysis.

a, All 61 SST records, with methods as follows: from alkenone indices, blue circles; from Mg/Ca ratios, red triangles; and from species assemblage methods, brown squares. b, Repeated after clustering records within 5° latitude/longitude of each other, with the 11 clusters in cyan diamonds and the remaining 18 records as in a.

Source data

Extended Data Figure 2 Temporal distribution of the 61 SST proxy reconstructions used in this analysis.

a, Reconstruction length versus latitude, colours as in Extended Data Fig. 1. b, Empirical cumulative distribution function for lengths of the SST proxy reconstructions. c, Empirical cumulative distribution function for lengths of GAST time series in the final simulation ensemble of potential GAST time series.

Source data

Extended Data Figure 3 Comparison of different methods used to estimate GAST.

a, The primary GAST estimate (using 61 proxy reconstructions) is plotted as a function of time, with the median in black and the 95% interval in grey. The GAST estimation method is repeated for a clustering of the data (11 clusters and 18 individual reconstructions), with the median shown in cyan, and for only the 5 proxy reconstructions that cover the past 2 Myr, with the median shown in orange. b, The median time series from each alternative method are plotted against the primary median GAST estimate, with the clustered version in cyan circles and the 5-record version in orange squares. c, The primary GAST estimate is plotted as a function of time, with the median in black and the 95% interval in grey. An alternative GAST estimation method using a time-varying scalar based on the deep-sea oxygen isotopes median estimate is shown in green, and another estimation method based on the relative sea level median estimate is shown in purple. d, The median time series from each alternative method is plotted against the primary median GAST estimate, with the reconstruction scaled using deep sea oxygen isotopes shown in green circles and the reconstruction scaled using relative sea level shown in purple squares.

Source data

Extended Data Figure 4 Estimates of the ratio of change in GAST to change in average SST.

a, b, Scatter plots show the dependency of the ratio of change in GAST to change in average SST over the latitudinal zone 60° N to 60° S from PMIP2 and PMIP3 climate model simulations31,32 as a function of change in GAST at the LGM (a) and of model climate sensitivity (b). The climate sensitivity estimates (in °C per W m−2) are from ref. 33. Dashed lines show the scalar range used in this analysis.

Source data

Extended Data Figure 5 Estimating change in GAST at the LGM using simulations drawn from PMIP model outputs.

The solid, purple line is the empirically fitted frequency distribution (shown in density on the y axis) of GAST estimated from the full air surface temperature outputs from the 9 PMIP models. The dashed, black line is the distribution of GAST estimated using the method in the present paper and the PMIP SST outputs drawn from only the locations of the 61 proxy reconstructions. The short-dashed, orange line is the same analysis completed for only the 5 proxy reconstructions that cover the past 2 Myr. The thin vertical lines are the medians of each distribution.

Source data

Extended Data Figure 6 The dependence of coupling relationships over time for GAST on changes in Antarctic temperature and GHG radiative forcing.

a, b, Regression results of change in GAST as a function of change in Antarctic temperature14 (a) and of change in GHG radiative forcing17,18,54 (b) are calculated for moving 200-kyr-long time windows every 5 kyr. The solid line shows the median estimates, with the coloured and grey-shaded areas showing the 50% and 95% intervals, respectively. The dashed lines show the 95% intervals calculated from the entire time series.

Source data

Extended Data Figure 7 Comparison of changes in GAST to changes in CO2 radiative forcing.

Boron-isotope-based proxy reconstruction of CO2 from refs 17, 56. Blue points are from 0–1 Ma, red points are from 1–2 Ma, and error bars show 95% intervals.

Source data

Extended Data Table 1 Database of SST proxy reconstructions based on Mg/Ca ratio and species assemblages used in estimating GAST
Extended Data Table 2 Database of SST proxy reconstructions based on alkenone indices used in estimating GAST
Extended Data Table 3 Comparisons of GAST with other important palaeoclimate reconstructions

Related audio

41586_2016_BFnature19798_MOESM259_ESM.mp3

Gavin Schmidt – director of the NASA Goddard Institute for Space Studies – explains what 2 million years of global temperatures tells us about our planet.

Supplementary information

Supplementary Methods

This file contains the R code for key methods described in the paper. (PDF 187 kb)

Supplementary Data

This file shows the new global average surface temperature (GAST) reconstruction at 2.5%, 5%, 25%, 50%, 75%, 95%, and 97.5% likelihood values and the 61 sea-surface temperature reconstructions used to create the GAST reconstruction, including a detailed summary table. (XLSX 898 kb)

PowerPoint slides

Source data

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Snyder, C. Evolution of global temperature over the past two million years. Nature 538, 226–228 (2016). https://doi.org/10.1038/nature19798

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nature19798

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing