Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

In vitro and ex vivo strategies for intracellular delivery

Abstract

Intracellular delivery of materials has become a critical component of genome-editing approaches, ex vivo cell-based therapies, and a diversity of fundamental research applications. Limitations of current technologies motivate development of next-generation systems that can deliver a broad variety of cargo to diverse cell types. Here we review in vitro and ex vivo intracellular delivery approaches with a focus on mechanisms, challenges and opportunities. In particular, we emphasize membrane-disruption-based delivery methods and the transformative role of nanotechnology, microfluidics and laboratory-on-chip technology in advancing the field.

This is a preview of subscription content

Access options

Buy article

Get time limited or full article access on ReadCube.

$32.00

All prices are NET prices.

Figure 1: Intracellular delivery is a key step in investigating and engineering cells.
Figure 2: Map of the relationship between intracellular delivery approaches, basic mechanism and conventional physical and biochemical categorizations.
Figure 3: Membrane disruption and recovery in the context of intracellular delivery.
Figure 4: Selected modes of bulk, microscale and nanoscale approaches for membrane-disruption-based intracellular delivery.

References

  1. Yin, H. et al. Non-viral vectors for gene-based therapy. Nat. Rev. Genet. 15, 541–555 (2014)

    CAS  PubMed  Article  Google Scholar 

  2. Wittrup, A. & Lieberman, J. Knocking down disease: a progress report on siRNA therapeutics. Nat. Rev. Genet. 16, 543–552 (2015)

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  3. Naldini, L. Ex vivo gene transfer and correction for cell-based therapies. Nat. Rev. Genet. 12, 301–315 (2011)

    CAS  PubMed  Article  Google Scholar 

  4. Naldini, L. Gene therapy returns to centre stage. Nature 526, 351–360 (2015)

    CAS  ADS  PubMed  Article  Google Scholar 

  5. June, C. H., Riddell, S. R. & Schumacher, T. N. Adoptive cellular therapy: a race to the finish line. Sci. Transl. Med. 7, 280ps7 (2015)

    PubMed  Article  CAS  Google Scholar 

  6. Rosenberg, S. A. & Restifo, N. P. Adoptive cell transfer as personalized immunotherapy for human cancer. Science 348, 62–68 (2015)

    CAS  ADS  PubMed  PubMed Central  Article  Google Scholar 

  7. Tebas, P. et al. Gene editing of CCR5 in autologous CD4 T cells of persons infected with HIV. N. Engl. J. Med. 370, 901–910 (2014)

    CAS  Article  Google Scholar 

  8. Sather, B. D. et al. Efficient modification of CCR5 in primary human hematopoietic cells using a megaTAL nuclease and AAV donor template. Sci. Transl. Med. 7, 307ra156 (2015)

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  9. Doudna, J. A. & Charpentier, E. Genome editing. The new frontier of genome engineering with CRISPR-Cas9. Science 346, 1258096 (2014)

    PubMed  Article  CAS  Google Scholar 

  10. Cox, D. B., Platt, R. J. & Zhang, F. Therapeutic genome editing: prospects and challenges. Nat. Med. 21, 121–131 (2015)

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  11. Kim, D. et al. Generation of human induced pluripotent stem cells by direct delivery of reprogramming proteins. Cell Stem Cell 4, 472–476 (2009)

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  12. Warren, L. et al. Highly efficient reprogramming to pluripotency and directed differentiation of human cells with synthetic modified mRNA. Cell Stem Cell 7, 618–630 (2010)

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  13. Anokye-Danso, F. et al. Highly efficient miRNA-mediated reprogramming of mouse and human somatic cells to pluripotency. Cell Stem Cell 8, 376–388 (2011)

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  14. Marschall, A. L. J. et al. Delivery of antibodies to the cytosol: debunking the myths. Mabs 6, 943–956 (2014)

    PubMed  PubMed Central  Article  Google Scholar 

  15. Liu, J., Wen, J., Zhang, Z., Liu, H. & Sun, Y. Voyage inside the cell: microsystems and nanoengineering for intracellular measurement and manipulation. Microsyst. Nanoeng. 1, 15020 (2015)

    CAS  Article  Google Scholar 

  16. Lee, S. E., Liu, G. L., Kim, F. & Lee, L. P. Remote optical switch for localized and selective control of gene interference. Nano Lett. 9, 562–570 (2009)

    CAS  ADS  PubMed  PubMed Central  Article  Google Scholar 

  17. Heller, D. A., Baik, S., Eurell, T. E. & Strano, M. S. Single-walled carbon nanotube spectroscopy in live cells: Towards long-term labels and optical sensors. Adv. Mater. 17, 2793–2799 (2005)

    CAS  Article  Google Scholar 

  18. Michalet, X. et al. Quantum dots for live cells, in vivo imaging, and diagnostics. Science 307, 538–544 (2005)

    CAS  ADS  PubMed  PubMed Central  Article  Google Scholar 

  19. Karra, D. & Dahm, R. Transfection techniques for neuronal cells. J. Neurosci. 30, 6171–6177 (2010)

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  20. Peer, D. A daunting task: manipulating leukocyte function with RNAi. Immunol. Rev. 253, 185–197 (2013)

    PubMed  Article  CAS  Google Scholar 

  21. Hendel, A. et al. Chemically modified guide RNAs enhance CRISPR-Cas genome editing in human primary cells. Nat. Biotechnol. 33, 985–989 (2015)

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  22. Thomas, C. E., Ehrhardt, A. & Kay, M. A. Progress and problems with the use of viral vectors for gene therapy. Nat. Rev. Genet. 4, 346–358 (2003)

    CAS  PubMed  Article  Google Scholar 

  23. Kay, M. A. State-of-the-art gene-based therapies: the road ahead. Nat. Rev. Genet. 12, 316–328 (2011)

    CAS  PubMed  Article  Google Scholar 

  24. Mintzer, M. A. & Simanek, E. E. Nonviral vectors for gene delivery. Chem. Rev. 109, 259–302 (2009)

    CAS  PubMed  Article  Google Scholar 

  25. Yoo, J. W., Irvine, D. J., Discher, D. E. & Mitragotri, S. Bio-inspired, bioengineered and biomimetic drug delivery carriers. Nat. Rev. Drug Discov. 10, 521–535 (2011)

    CAS  PubMed  Article  Google Scholar 

  26. Torchilin, V. P. Multifunctional, stimuli-sensitive nanoparticulate systems for drug delivery. Nat. Rev. Drug Discov. 13, 813–827 (2014)

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  27. Mitragotri, S., Burke, P. A. & Langer, R. Overcoming the challenges in administering biopharmaceuticals: formulation and delivery strategies. Nat. Rev. Drug Discov. 13, 655–672 (2014)

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  28. Khalil, I. A., Kogure, K., Akita, H. & Harashima, H. Uptake pathways and subsequent intracellular trafficking in nonviral gene delivery. Pharmacol. Rev. 58, 32–45 (2006)

    CAS  PubMed  Article  Google Scholar 

  29. Sahay, G., Alakhova, D. Y. & Kabanov, A. V. Endocytosis of nanomedicines. J. Control. Release 145, 182–195 (2010)

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  30. Stewart, M. P., Lorenz, A., Dahlman, J. & Sahay, G. Challenges in carrier-mediated intracellular delivery: moving beyond endosomal barriers. Wiley Interdiscip. Rev. Nanomed. Nanobiotechnol. 8, 465–478 (2016)

    PubMed  Article  Google Scholar 

  31. Sahay, G. et al. Efficiency of siRNA delivery by lipid nanoparticles is limited by endocytic recycling. Nat. Biotechnol. 31, 653–658 (2013)

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  32. Gilleron, J. et al. Image-based analysis of lipid nanoparticle-mediated siRNA delivery, intracellular trafficking and endosomal escape. Nat. Biotechnol. 31, 638–646 (2013)

    CAS  PubMed  Article  Google Scholar 

  33. Schaffer, D. V., Fidelman, N. A., Dan, N. & Lauffenburger, D. A. Vector unpacking as a potential barrier for receptor-mediated polyplex gene delivery. Biotechnol. Bioeng. 67, 598–606 (2000)

    CAS  PubMed  Article  Google Scholar 

  34. Lv, H., Zhang, S., Wang, B., Cui, S. & Yan, J. Toxicity of cationic lipids and cationic polymers in gene delivery. J. Control. Release 114, 100–109 (2006)

    CAS  PubMed  Article  Google Scholar 

  35. Yang, B. et al. High-throughput screening identifies small molecules that enhance the pharmacological effects of oligonucleotides. Nucleic Acids Res. 43, 1987–1996 (2015)

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  36. Furusawa, M., Nishimura, T., Yamaizumi, M. & Okada, Y. Injection of foreign substances into single cells by cell fusion. Nature 249, 449–450 (1974)

    CAS  ADS  PubMed  Article  Google Scholar 

  37. Helenius, A., Doxsey, S. & Mellman, I. Viruses as tools in drug delivery. Ann. NY Acad. Sci. 507, 1–6 (1987)

    CAS  ADS  PubMed  Article  Google Scholar 

  38. Daemen, T. et al. Virosomes for antigen and DNA delivery. Adv. Drug Deliv. Rev. 57, 451–463 (2005)

    CAS  PubMed  Article  Google Scholar 

  39. Montecalvo, A. et al. Mechanism of transfer of functional microRNAs between mouse dendritic cells via exosomes. Blood 119, 756–766 (2012)

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  40. El Andaloussi, S., Mäger, I., Breakefield, X. O. & Wood, M. J. A. Extracellular vesicles: biology and emerging therapeutic opportunities. Nat. Rev. Drug Discov. 12, 347–357 (2013)

    CAS  Article  PubMed  Google Scholar 

  41. He, W. et al. Discovery of siRNA lipid nanoparticles to transfect suspension leukemia cells and provide in vivo delivery capability. Mol. Ther. 22, 359–370 (2014)

    CAS  PubMed  Article  Google Scholar 

  42. Blanco, E., Shen, H. & Ferrari, M. Principles of nanoparticle design for overcoming biological barriers to drug delivery. Nat. Biotechnol. 33, 941–951 (2015)

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  43. Van Meirvenne, S. et al. Efficient genetic modification of murine dendritic cells by electroporation with mRNA. Cancer Gene Ther. 9, 787–797 (2002)

    CAS  PubMed  Article  Google Scholar 

  44. Wang, Y. et al. Poking cells for efficient vector-free intracellular delivery. Nat. Commun. 5, 4466 (2014)

    CAS  ADS  PubMed  Article  Google Scholar 

  45. Sharei, A. et al. A vector-free microfluidic platform for intracellular delivery. Proc. Natl Acad. Sci. USA 110, 2082–2087 (2013).In this paper, rapid mechanical deformation of cells through microfluidic constrictions was shown to achieve efficient intracellular delivery of a wide range of molecular cargo.

    CAS  ADS  PubMed  Article  PubMed Central  Google Scholar 

  46. Schumann, K. et al. Generation of knock-in primary human T cells using Cas9 ribonucleoproteins. Proc. Natl Acad. Sci. USA 112, 10437–10442 (2015)

    CAS  ADS  PubMed  Article  PubMed Central  Google Scholar 

  47. Schulz, I. Permeabilizing cells: some methods and applications for the study of intracellular processes. Methods Enzymol. 192, 280–300 (1990)

    CAS  PubMed  Article  Google Scholar 

  48. Hapala, I. Breaking the barrier: methods for reversible permeabilization of cellular membranes. Crit. Rev. Biotechnol. 17, 105–122 (1997)

    CAS  PubMed  Article  Google Scholar 

  49. Agarwal, J., Walsh, A. & Lee, R. C. Multimodal strategies for resuscitating injured cells. Ann. NY Acad. Sci. 1066, 295–309 (2005)

    CAS  ADS  PubMed  Article  Google Scholar 

  50. Gurtovenko, A. A., Anwar, J. & Vattulainen, I. Defect-mediated trafficking across cell membranes: insights from in silico modeling. Chem. Rev. 110, 6077–6103 (2010)

    CAS  PubMed  Article  Google Scholar 

  51. Bloom, M., Evans, E. & Mouritsen, O. G. Physical properties of the fluid lipid-bilayer component of cell membranes: a perspective. Q. Rev. Biophys. 24, 293–397 (1991)

    CAS  PubMed  Article  Google Scholar 

  52. Barber, M. A. A technic for the inoculation of bacteria and other substances into living cells. J. Infect. Dis. 8, 348–360 (1911).This is arguably amongst the first reports on intracellular delivery, demonstrating basic microinjection of isolated cells

    Article  Google Scholar 

  53. Klein, T. M., Wolf, E. D., Wu, R. & Sanford, J. C. High-velocity microprojectiles for delivering nucleic-acids into living cells. Nature 327, 70–73 (1987)This report introduced the gene gun for intracellular delivery by exploiting biolistic particles.

    CAS  ADS  Article  Google Scholar 

  54. Mcneil, P. L. Incorporation of macromolecules into living cells. Methods Cell Biol. 29, 153–173 (1988)

    Article  Google Scholar 

  55. Clarke, M. S. F. & McNeil, P. L. Syringe loading introduces macromolecules into living mammalian cell cytosol. J. Cell Sci. 102, 533–541 (1992)

    CAS  PubMed  Google Scholar 

  56. LaPlaca, M. C., Lee, V. M. Y. & Thibault, L. E. An in vitro model of traumatic neuronal injury: loading rate-dependent changes in acute cytosolic calcium and lactate dehydrogenase release. J. Neurotrauma 14, 355–368 (1997)

    CAS  PubMed  Article  Google Scholar 

  57. Hallow, D. M. et al. Shear-induced intracellular loading of cells with molecules by controlled microfluidics. Biotechnol. Bioeng. 99, 846–854 (2008)

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  58. Borle, A. B. & Snowdowne, K. W. Measurement of intracellular free calcium in monkey kidney cells with aequorin. Science 217, 252–254 (1982)

    CAS  ADS  PubMed  Article  Google Scholar 

  59. Groulx, N., Boudreault, F., Orlov, S. N. & Grygorczyk, R. Membrane reserves and hypotonic cell swelling. J. Membr. Biol. 214, 43–56 (2006)

    CAS  Article  PubMed  Google Scholar 

  60. Bischof, J. C. et al. Dynamics of cell membrane permeability changes at supraphysiological temperatures. Biophys. J. 68, 2608–2614 (1995)

    CAS  ADS  PubMed  PubMed Central  Article  Google Scholar 

  61. He, X. M., Amin, A. A., Fowler, A. & Toner, M. Thermally induced introduction of trehalose into primary rat hepatocytes. Cell Preserv. Technol. 4, 178–187 (2006)

    CAS  Article  Google Scholar 

  62. Weaver, J. C. & Chizmadzhev, Y. A. Theory of electroporation: a review. Bioelectrochem. Bioenerg. 41, 135–160 (1996)

    CAS  Article  Google Scholar 

  63. Kandušer, M. & Miklavcˇicˇ, D. in Electrotechnologies for Extraction from Food Plants and Biomaterials (eds Vorobiev, E. & Lebovka, N.) Ch. 1, 1–37 (Springer, 2008)

    Google Scholar 

  64. Tsukakoshi, M., Kurata, S., Nomiya, Y., Ikawa, Y. & Kasuya, T. A novel method of DNA transfection by laser microbeam cell surgery. Appl. Phys. B 35, 135–140 (1984). This pioneering paper demonstrated DNA transfection of mammalian cells by laser optoporation.

    ADS  Article  Google Scholar 

  65. Stevenson, D. J., Gunn-Moore, F. J., Campbell, P. & Dholakia, K. Single cell optical transfection. J. R. Soc. Interf. 7, 863–871 (2010)

    CAS  Article  Google Scholar 

  66. Vogel, A., Noack, J., Huttman, G. & Paltauf, G. Mechanisms of femtosecond laser nanosurgery of cells and tissues. Appl. Phys. B 81, 1015–1047 (2005)This publication outlines a comprehensive framework covering the mechanisms of laser–membrane interactions.

    CAS  ADS  Article  Google Scholar 

  67. Bischofberger, M., Iacovache, I. & van der Goot, F. G. Pathogenic pore-forming proteins: function and host response. Cell Host Microbe 12, 266–275 (2012)

    CAS  PubMed  Article  Google Scholar 

  68. Walev, I. et al. Delivery of proteins into living cells by reversible membrane permeabilization with streptolysin-O. Proc. Natl Acad. Sci. USA 98, 3185–3190 (2001)

    CAS  ADS  PubMed  Article  PubMed Central  Google Scholar 

  69. Frenkel, N., Makky, A., Sudji, I. R., Wink, M. & Tanaka, M. Mechanistic investigation of interactions between steroidal saponin digitonin and cell membrane models. J. Phys. Chem. B 118, 14632–14639 (2014)

    CAS  PubMed  Article  Google Scholar 

  70. Cooper, S. T. & McNeil, P. L. Membrane repair: mechanisms and pathophysiology. Physiol. Rev. 95, 1205–1240 (2015)

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  71. Moe, A. M., Golding, A. E. & Bement, W. M. Cell healing: calcium, repair and regeneration. Semin. Cell Dev. Biol. 45, 18–23 (2015)

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  72. Jimenez, A. J. & Perez, F. Physico-chemical and biological considerations for membrane wound evolution and repair in animal cells. Semin. Cell Dev. Biol. 45, 2–9 (2015)

    CAS  PubMed  Article  Google Scholar 

  73. Boucher, E. & Mandato, C. A. Plasma membrane and cytoskeleton dynamics during single-cell wound healing. Biochim. Biophys. Acta 1853, 2649–2661 (2015)

    CAS  PubMed  Article  Google Scholar 

  74. Andrews, N. W., Corrotte, M. & Castro-Gomes, T. Above the fray: surface remodeling by secreted lysosomal enzymes leads to endocytosis-mediated plasma membrane repair. Semin. Cell Dev. Biol. 45, 10–17 (2015)

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  75. Steinhardt, R. A., Bi, G. & Alderton, J. M. Cell membrane resealing by a vesicular mechanism similar to neurotransmitter release. Science 263, 390–393 (1994). This groundbreaking paper alerted the research community to the active and responsive nature of cell plasma membrane repair, which was previously attributed to passive resealing.

    CAS  ADS  PubMed  Article  Google Scholar 

  76. Venslauskas, M. S. & Šatkauskas, S. Mechanisms of transfer of bioactive molecules through the cell membrane by electroporation. Eur. Biophys. J. 44, 277–289 (2015)

    PubMed  Article  Google Scholar 

  77. Neumann, E., Schaefer-Ridder, M., Wang, Y. & Hofschneider, P. H. Gene transfer into mouse lyoma cells by electroporation in high electric fields. EMBO J. 1, 841–845 (1982). This pioneering paper demonstrated DNA transfection of mammalian cells by electroporation.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  78. Movahed, S. & Li, D. Q. Microfluidics cell electroporation. Microfluidics Nanofluidics 10, 703–734 (2011)

    CAS  Article  Google Scholar 

  79. Geng, T. et al. Flow-through electroporation based on constant voltage for large-volume transfection of cells. J. Control. Release 144, 91–100 (2010)

    CAS  PubMed  Article  Google Scholar 

  80. Zhan, Y., Wang, J., Bao, N. & Lu, C. Electroporation of cells in microfluidic droplets. Anal. Chem. 81, 2027–2031 (2009)

    CAS  PubMed  Article  Google Scholar 

  81. Boukany, P. E. et al. Nanochannel electroporation delivers precise amounts of biomolecules into living cells. Nat. Nanotechnol. 6, 747–754 (2011)

    CAS  ADS  PubMed  Article  Google Scholar 

  82. McKnight, T. E. et al. Intracellular integration of synthetic nanostructures with viable cells for controlled biochemical manipulation. Nanotechnology 14, 551–556 (2003)This pioneering paper constitutes the first major implementation of nanoneedle arrays for DNA transfection.

    CAS  ADS  Article  Google Scholar 

  83. Shalek, A. K. et al. Vertical silicon nanowires as a universal platform for delivering biomolecules into living cells. Proc. Natl Acad. Sci. USA 107, 1870–1875 (2010). This study expanded the use of nanoneedles for co-delivery of diverse biomolecules.

    CAS  ADS  PubMed  Article  PubMed Central  Google Scholar 

  84. VanDersarl, J. J., Xu, A. M. & Melosh, N. A. Nanostraws for direct fluidic intracellular access. Nano Lett. 12, 3881–3886 (2012)

    ADS  Article  CAS  Google Scholar 

  85. Xie, X. et al. Nanostraw-electroporation system for highly efficient intracellular delivery and transfection. ACS Nano 7, 4351–4358 (2013)

    CAS  PubMed  Article  Google Scholar 

  86. Shalek, A. K. et al. Nanowire-mediated delivery enables functional interrogation of primary immune cells: application to the analysis of chronic lymphocytic leukemia. Nano Lett. 12, 6498–6504 (2012)

    CAS  ADS  PubMed  PubMed Central  Article  Google Scholar 

  87. Xu, A. M. et al. Quantification of nanowire penetration into living cells. Nat. Commun. 5, 3613 (2014)

    ADS  PubMed  Article  CAS  Google Scholar 

  88. Marmottant, P. & Hilgenfeldt, S. Controlled vesicle deformation and lysis by single oscillating bubbles. Nature 423, 153–156 (2003)

    CAS  ADS  Article  PubMed  Google Scholar 

  89. Liu, Y., Yan, J. & Prausnitz, M. R. Can ultrasound enable efficient intracellular uptake of molecules? A retrospective literature review and analysis. Ultrasound Med. Biol. 38, 876–888 (2012)

    PubMed  PubMed Central  Article  Google Scholar 

  90. Fechheimer, M. et al. Transfection of mammalian cells with plasmid DNA by scrape loading and sonication loading. Proc. Natl Acad. Sci. USA 84, 8463–8467 (1987)This pioneering paper demonstrated DNA transfection of mammalian cells by ultrasound.

    CAS  ADS  PubMed  Article  PubMed Central  Google Scholar 

  91. Prentice, P., Cuschierp, A., Dholakia, K., Prausnitz, M. & Campbell, P. Membrane disruption by optically controlled microbubble cavitation. Nat. Phys. 1, 107–110 (2005)

    CAS  Article  Google Scholar 

  92. Ohl, C. D. et al. Sonoporation from jetting cavitation bubbles. Biophys. J. 91, 4285–4295 (2006)

    CAS  ADS  PubMed  PubMed Central  Article  Google Scholar 

  93. Wu, Y. C. et al. Massively parallel delivery of large cargo into mammalian cells with light pulses. Nat. Methods 12, 439–444 (2015)

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  94. Cui, X., Dean, D., Ruggeri, Z. M. & Boland, T. Cell damage evaluation of thermal inkjet printed Chinese hamster ovary cells. Biotechnol. Bioeng. 106, 963–969 (2010)

    CAS  PubMed  Article  Google Scholar 

  95. Xiong, R. et al. Comparison of gold nanoparticle mediated photoporation: vapor nanobubbles outperform direct heating for delivering macromolecules in live cells. ACS Nano 8, 6288–6296 (2014)

    CAS  PubMed  Article  Google Scholar 

  96. Schomaker, M. et al. Characterization of nanoparticle mediated laser transfection by femtosecond laser pulses for applications in molecular medicine. J. Nanobiotechnol. 13:10, http://dx.doi.org/10.1186/s12951-014-0057-1 (2015)

    Article  CAS  Google Scholar 

  97. Yao, C., Qu, X., Zhang, Z., Hüttmann, G. & Rahmanzadeh, R. Influence of laser parameters on nanoparticle-induced membrane permeabilization. J. Biomed. Opt. 14, 054034 (2009)

    ADS  PubMed  Article  CAS  Google Scholar 

  98. Time to deliver. Nat. Biotechnol. 32, 961 (2014)

  99. Park, K. Facing the truth about nanotechnology in drug delivery. ACS Nano 7, 7442–7447 (2013)

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  100. Rajendran, L., Knölker, H. J. & Simons, K. Subcellular targeting strategies for drug design and delivery. Nat. Rev. Drug Discov. 9, 29–42 (2010)

    CAS  PubMed  Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the US National Institute of Health (R01GM101420-01A1). M.P.S. was supported by the Swiss NSF through the advanced postdoc mobility fellowship P300P3_151179. M.P.S. acknowledges support from a Keith Murdoch Fellowship via the American Australian Association, a Life Sciences Research Foundation Fellowship sponsored by Good Ventures, and a Broadnext10 Catalytic Steps funding gift from the Broad Institute. A.S. was supported by a Ragon Institute fellowship. We thank the following people for comments and constructive criticism: E. van Leen, D. Irvine, J. Voldman, S. Manalis, J. Weaver, J. Lieberman, R. Karnik, R. Lee, D. Mueller, S. Bhakdi, Y. Toyoda, Z. Maliga, H.-J. Lee, N. Yang, E. Lim, R. Sayde and K. Blagovic.

Author information

Authors and Affiliations

Authors

Contributions

R.L. and K.F.J. shaped ideas and provided guidance. M.P.S. constructed the figures. M.P.S. and A.S. wrote the manuscript (with assistance from X.D. and G.S.).

Corresponding authors

Correspondence to Robert Langer or Klavs F. Jensen.

Ethics declarations

Competing interests

A.S., K.F.J. and R.L. have a financial interest in SQZ Biotech, a startup company focused on engineering immune cell function for cell based therapies (http://sqzbiotech.com/).

Additional information

Reviewer Information

Nature thanks L. Lee, M. Prausnitz and the other anonymous reviewer(s) for their contribution to the peer review of this work.

PowerPoint slides

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Stewart, M., Sharei, A., Ding, X. et al. In vitro and ex vivo strategies for intracellular delivery. Nature 538, 183–192 (2016). https://doi.org/10.1038/nature19764

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nature19764

Further reading

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing