Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Late Pleistocene climate drivers of early human migration

Abstract

On the basis of fossil and archaeological data it has been hypothesized that the exodus of Homo sapiens out of Africa and into Eurasia between ~50–120 thousand years ago occurred in several orbitally paced migration episodes1,2,3,4. Crossing vegetated pluvial corridors from northeastern Africa into the Arabian Peninsula and the Levant and expanding further into Eurasia, Australia and the Americas, early H. sapiens experienced massive time-varying climate and sea level conditions on a variety of timescales. Hitherto it has remained difficult to quantify the effect of glacial- and millennial-scale climate variability on early human dispersal and evolution. Here we present results from a numerical human dispersal model, which is forced by spatiotemporal estimates of climate and sea level changes over the past 125 thousand years. The model simulates the overall dispersal of H. sapiens in close agreement with archaeological and fossil data and features prominent glacial migration waves across the Arabian Peninsula and the Levant region around 106–94, 89–73, 59–47 and 45–29 thousand years ago. The findings document that orbital-scale global climate swings played a key role in shaping Late Pleistocene global population distributions, whereas millennial-scale abrupt climate changes, associated with Dansgaard–Oeschger events, had a more limited regional effect.

This is a preview of subscription content

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Figure 1: Climate drivers.
Figure 2: Late Pleistocene human dispersal.
Figure 3: Arrival Times for different dispersal scenarios.

References

  1. 1

    Jennings, R. P. et al. The greening of Arabia: Multiple opportunities for human occupation of the Arabian Peninsula during the Late Pleistocene inferred from an ensemble of climate model simulations. Quat. Int. 382, 181–199 (2015)

    Article  Google Scholar 

  2. 2

    Parton, A. et al. Orbital-scale climate variability in Arabia as a potential motor for human dispersals. Quat. Int. 382, 82–97 (2015)

    Article  Google Scholar 

  3. 3

    Larrasoaña, J. C., Roberts, A. P. & Rohling, E. J. Dynamics of green Sahara periods and their role in hominin evolution. PLoS One 8, e76514 (2013)

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  4. 4

    Breeze, P. S. et al. Palaeohydrological corridors for hominin dispersals in the Middle East similar to 250–70,000 years ago. Quat. Sci. Rev. 144, 155–185 (2016)

    Article  ADS  Google Scholar 

  5. 5

    Carto, S. L., Weaver, A. J., Hetherington, R., Lam, Y. & Wiebe, E. C. Out of Africa and into an ice age: on the role of global climate change in the late Pleistocene migration of early modern humans out of Africa. J. Hum. Evol. 56, 139–151 (2009)

    Article  PubMed  Google Scholar 

  6. 6

    Castañeda, I. S. et al. Wet phases in the Sahara/Sahel region and human migration patterns in North Africa. Proc. Natl Acad. Sci. USA 106, 20159–20163 (2009)

    Article  ADS  PubMed  Google Scholar 

  7. 7

    Scholz, C. A. et al. East African megadroughts between 135 and 75 thousand years ago and bearing on early-modern human origins. Proc. Natl Acad. Sci. USA 104, 16416–16421 (2007)

    CAS  Article  ADS  PubMed  Google Scholar 

  8. 8

    Frumkin, A., Bar-Yosef, O. & Schwarcz, H. P. Possible paleohydrologic and paleoclimatic effects on hominin migration and occupation of the Levantine Middle Paleolithic. J. Hum. Evol. 60, 437–451 (2011)

    Article  PubMed  Google Scholar 

  9. 9

    Timmermann, A. et al. Modeling Obliquity and CO2 Effects on Southern Hemisphere Climate during the Past 408 ka. J. Clim. 27, 1863–1875 (2014)

    Article  ADS  Google Scholar 

  10. 10

    Waelbroeck, C. et al. Sea-level and deep water temperature changes derived from benthic foraminifera isotopic records. Quat. Sci. Rev. 21, 295–305 (2002)

    Article  ADS  Google Scholar 

  11. 11

    Oppenheimer, S. Out-of-Africa, the peopling of continents and islands: tracing uniparental gene trees across the map. Phil. Trans. R. Soc. Lond. B 367, 770–784 (2012)

    CAS  Article  Google Scholar 

  12. 12

    Soares, P. et al. The Expansion of mtDNA Haplogroup L3 within and out of Africa. Mol. Biol. Evol. 29, 915–927 (2012)

    CAS  Article  PubMed  Google Scholar 

  13. 13

    Petraglia, M. et al. Middle Paleolithic assemblages from the Indian subcontinent before and after the Toba super-eruption. Science 317, 114–116 (2007)

    CAS  Article  ADS  Google Scholar 

  14. 14

    Petraglia, M. D., Haslam, M., Fuller, D. Q., Boivin, N. & Clarkson, C. Out of Africa: new hypotheses and evidence for the dispersal of H. sapiens along the Indian Ocean rim. Ann. Hum. Biol. 37, 288–311 (2010)

    Article  PubMed  Google Scholar 

  15. 15

    Liu, W. et al. The earliest unequivocally modern humans in southern China. Nature 526, 696–699 (2015)

    CAS  Article  ADS  PubMed  Google Scholar 

  16. 16

    Mellars, P., Gori, K. C., Carr, M., Soares, P. A. & Richards, M. B. Genetic and archaeological perspectives on the initial modern human colonization of southern Asia. Proc. Natl Acad. Sci. USA 110, 10699–10704 (2013)

    CAS  Article  ADS  PubMed  Google Scholar 

  17. 17

    Benazzi, S. et al. Early dispersal of modern humans in Europe and implications for Neanderthal behaviour. Nature 479, 525–528 (2011)

    CAS  Article  ADS  PubMed  Google Scholar 

  18. 18

    Fu, Q. et al. An early modern human from Romania with a recent Neanderthal ancestor. Nature 524, 216–219 (2015)

    CAS  Article  ADS  PubMed  PubMed Central  Google Scholar 

  19. 19

    Clarkson, C. et al. The archaeology, chronology and stratigraphy of Madjedbebe (Malakunanja II): A site in northern Australia with early occupation. J. Hum. Evol. 83, 46–64 (2015)

    Article  PubMed  PubMed Central  Google Scholar 

  20. 20

    Grün, R. et al. U-series and ESR analyses of bones and teeth relating to the human burials from Skhul. J. Hum. Evol. 49, 316–334 (2005)

    Article  PubMed  Google Scholar 

  21. 21

    Groucutt, H. S. et al. Rethinking the dispersal of H. sapiens out of Africa. Evol. Anthropol. 24, 149–164 (2015)

    Article  PubMed  PubMed Central  Google Scholar 

  22. 22

    Gunz, P. et al. Early modern human diversity suggests subdivided population structure and a complex out-of-Africa scenario. Proc. Natl Acad. Sci. USA 106, 6094–6098 (2009)

    CAS  Article  ADS  PubMed  Google Scholar 

  23. 23

    Eriksson, A. et al. Late Pleistocene climate change and the global expansion of anatomically modern humans. Proc. Natl Acad. Sci. USA 109, 16089–16094 (2012)

    CAS  Article  ADS  PubMed  Google Scholar 

  24. 24

    Lüthi, D. et al. High-resolution carbon dioxide concentration record 650,000–800,000 years before present. Nature 453, 379–382 (2008)

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  25. 25

    Martrat, B. et al. Four climate cycles of recurring deep and surface water destabilizations on the Iberian margin. Science 317, 502–507 (2007)

    CAS  Article  ADS  PubMed  Google Scholar 

  26. 26

    Bar-Matthews, M., Ayalon, A., Kaufman, A. & Wasserburg, G. J. The Eastern Mediterranean paleoclimate as a reflection of regional events: Soreq cave, Israel. Earth Planet. Sci. Lett. 166, 85–95 (1999)

    CAS  Article  ADS  Google Scholar 

  27. 27

    Stockhecke, M. et al. Millennial to orbital-scale variations of drought intensity in the Eastern Mediterranean. Quat. Sci. Rev. 133, 77–95 (2016)

    Article  ADS  Google Scholar 

  28. 28

    Kawamura, K. et al. Northern Hemisphere forcing of climatic cycles in Antarctica over the past 360,000 years. Nature 448, 912–916 (2007)

    CAS  Article  ADS  PubMed  Google Scholar 

  29. 29

    Armitage, S. J. et al. The southern route “out of Africa”: evidence for an early expansion of modern humans into Arabia. Science 331, 453–456 (2011)

    CAS  Article  ADS  PubMed  Google Scholar 

  30. 30

    Higham, T. et al. The earliest evidence for anatomically modern humans in northwestern Europe. Nature 479, 521–524 (2011)

    CAS  Article  ADS  PubMed  Google Scholar 

  31. 31

    Young, D. A. & Bettinger, R. L. Simulating the Global Human Expansion in the Late Pleistocene. J. Archaeol. Sci. 22, 89–92 (1995)

    Article  Google Scholar 

  32. 32

    Steele, J. Human dispersals: mathematical models and the archaeological record. Hum. Biol. 81, 121–140 (2009)

    Article  PubMed  Google Scholar 

  33. 33

    Fort, J., Pujol, T. & Cavalli-Sforza, L. L. Palaeolithic populations and waves of advance (Human range expansions). Camb. Archaeol. J. 14, 53–61 (2004)

    Article  Google Scholar 

  34. 34

    Scerri, E. M. L., Groucutt, H. S., Jennings, R. P. & Petraglia, M. D. Unexpected technological heterogeneity in northern Arabia indicates complex Late Pleistocene demography at the gateway to Asia. J. Hum. Evol. 75, 125–142 (2014)

    Article  PubMed  Google Scholar 

  35. 35

    Goosse, H. et al. Description of the Earth system model of intermediate complexity LOVECLIM version 1.2. Geosci. Model Dev. 3, 603–633 (2010)

    Article  ADS  Google Scholar 

  36. 36

    Opsteegh, J. D., Haarsma, R. J., Selten, F. M. & Kattenberg, A. ECBILT: a dynamic alternative to mixed boundary conditions in ocean models. Tellus, Ser. A, Dyn. Meterol. Oceanogr. 50, 348–367 (1998)

    Article  ADS  Google Scholar 

  37. 37

    Goosse, H. & Fichefet, T. Importance of ice-ocean interactions for the global ocean circulation: A model study. Journal of Geophysical Research 104, 23337–23355 (1999)

    Article  ADS  Google Scholar 

  38. 38

    Brovkin, V., Ganopolski, A. & Svirezhev, Y. A continuous climate-vegetation classification for use in climate-biosphere studies. Ecol. Modell. 101, 251–261 (1997)

    Article  Google Scholar 

  39. 39

    Ganopolski, A., Calov, R. & Claussen, M. Simulation of the last glacial cycle with a coupled climate ice-sheet model of intermediate complexity. Clim. Past 6, 229–244 (2010)

    Article  Google Scholar 

  40. 40

    Ganopolski, A. & Calov, R. The role of orbital forcing, carbon dioxide and regolith in 100 kyr glacial cycles. Clim. Past 7, 2391–2411 (2011)

    Article  Google Scholar 

  41. 41

    Berger, A. Long-term variations of caloric insolation resulting from the earth’s orbital elements. Quat. Res. 9, 139–167 (1978)

    Article  Google Scholar 

  42. 42

    Timm, O. & Timmermann, A. Simulation of the last 21000 years using accelerated transient boundary conditions. J. Clim. 20, 4377–4401 (2007)

    Article  ADS  Google Scholar 

  43. 43

    Timm, O., Timmermann, A., Abe-Ouchi, A., Saito, F. & Segawa, T. On the definition of seasons in paleoclimate simulations with orbital forcing. Paleoceanography 23, PA2221 (2008)

    Article  ADS  Google Scholar 

  44. 44

    Lawrence, K., Herbert, T., Brown, C., Raymo, M. & Haywood, A. High-amplitude variations in North Atlantic sea surface temperature during the early Pliocene warm period. Paleoceanography 24, (2009)

  45. 45

    Naafs, B., Hefter, J. & Stein, R. Millennial-scale ice rafting events and Hudson Strait Heinrich(-like) Events during the late Pliocene and Pleistocene: a review. Quat. Sci. Rev. 80, 1–28 (2013)

    Article  ADS  Google Scholar 

  46. 46

    Etourneau, J., Martinez, P., Blanz, T. & Schneider, R. Pliocene-Pleistocene variability of upwelling activity, productivity, and nutrient cycling in the Benguela region. Geology 37, 871–874 (2009)

    CAS  Article  ADS  Google Scholar 

  47. 47

    Herbert, T. D., Peterson, L. C., Lawrence, K. T. & Liu, Z. Tropical ocean temperatures over the past 3.5 million years. Science 328, 1530–1534 (2010)

    CAS  Article  ADS  PubMed  PubMed Central  Google Scholar 

  48. 48

    Li, L. et al. A 4-Ma record of thermal evolution in the tropical western Pacific and its implications on climate change. Earth Planet. Sci. Lett. 309, 10–20 (2011)

    CAS  Article  ADS  Google Scholar 

  49. 49

    de Garidel-Thoron, T., Rosenthal, Y., Bassinot, F. & Beaufort, L. Stable sea surface temperatures in the western Pacific warm pool over the past 1.75 million years. Nature 433, 294–298 (2005)

    CAS  Article  ADS  PubMed  Google Scholar 

  50. 50

    Medina-Elizalde, M. & Lea, D. W. The mid-Pleistocene transition in the tropical Pacific. Science 310, 1009–1012 (2005)

    CAS  Article  ADS  PubMed  Google Scholar 

  51. 51

    Russon, T. et al. Inter-hemispheric asymmetry in the early Pleistocene Pacific warm pool. Geophys. Res. Lett. 37, (2010)

    Article  Google Scholar 

  52. 52

    Pisias, N. & Rea, D. Late pleistocene paleoclimatology of the central equatorial pacific: sea surface response to the southeast trade winds. Paleoceanography 3, 21–37 (1988)

    Article  ADS  Google Scholar 

  53. 53

    Liu, Z. & Herbert, T. D. High-latitude influence on the eastern equatorial Pacific climate in the early Pleistocene epoch. Nature 427, 720–723 (2004)

    CAS  Article  ADS  PubMed  Google Scholar 

  54. 54

    Schaefer, G. et al. Planktic foraminiferal and sea surface temperature record during the last 1 Myr across the Subtropical Front, Southwest Pacific. Mar. Micropaleontol. 54, 191–212 (2005)

    Article  ADS  Google Scholar 

  55. 55

    Hayward, B. et al. The effect of submerged plateaux on Pleistocene gyral circulation and sea-surface temperatures in the Southwest Pacific. Global Planet. Change 63, 309–316 (2008)

    Article  ADS  Google Scholar 

  56. 56

    Martínez-Garcia, A., Rosell-Melé, A., McClymont, E. L., Gersonde, R. & Haug, G. H. Subpolar link to the emergence of the modern equatorial Pacific cold tongue. Science 328, 1550–1553 (2010)

    Article  ADS  CAS  PubMed  Google Scholar 

  57. 57

    Salgueiro, E. et al. Temperature and productivity changes off the western Iberian margin during the last 150 ky. Quat. Sci. Rev. 29, 680–695 (2010)

    Article  ADS  Google Scholar 

  58. 58

    Martinez, J., Mora, G. & Barrows, T. Paleoceanographic conditions in the western Caribbean Sea for the last 560 kyr as inferred from planktonic foraminifera. Mar. Micropaleontol. 64, 177–188 (2007)

    Article  ADS  Google Scholar 

  59. 59

    Voelker, A. H. & de Abreu, L. in Abrupt Climate Change: Mechanisms, Patterns, and Impacts Vol. 193 (eds Rashid, H., Polyak, L. & Mosley-Thompson, E. ) (AGU, Geophysical Monograph Series, 2011)

  60. 60

    Ziegler, M., Nurnberg, D., Karas, C., Tiedemann, R. & Lourens, L. Persistent summer expansion of the Atlantic Warm Pool during glacial abrupt cold events. Nat. Geosci. 1, 601–605 (2008)

    CAS  Article  ADS  Google Scholar 

  61. 61

    Herbert, T. D. & Schuffert, J. D. Vol. 165 1–9 (Proceedings of the Ocean Drilling Program, Scientific Results, College Station, TX (Ocean Drilling Program), 2000)

    Google Scholar 

  62. 62

    Calvo, E., Villanueva, J., Grimalt, J., Boelaert, A. & Labeyrie, L. New insights into the glacial latitudinal temperature gradients in the North Atlantic. Results from U-37(K ') sea surface temperatures and terrigenous inputs. Earth Planet. Sci. Lett. 188, 509–519 (2001)

    CAS  Article  ADS  Google Scholar 

  63. 63

    Weldeab, S., Lea, D. W., Schneider, R. R. & Andersen, N. 155,000 years of West African monsoon and ocean thermal evolution. Science 316, 1303–1307 (2007)

    CAS  Article  ADS  PubMed  Google Scholar 

  64. 64

    Mix, A. C. & Fairbanks, R. G. North-Atlantic surface-ocean control of pleistocene deep-ocean circulation. Earth Planet. Sci. Lett. 73, 231–243 (1985)

    CAS  Article  ADS  Google Scholar 

  65. 65

    Martrat, B. et al. Abrupt temperature changes in the Western Mediterranean over the past 250,000 years. Science 306, 1762–1765 (2004)

    CAS  Article  ADS  PubMed  Google Scholar 

  66. 66

    Schneider, R. R., Mueller, P. J. & Ruhland, G. Late quaternary surface circulation in the east Equatorial South-Atlantic - evidence from alkenone sea-surface temperatures. Paleoceanography 10, 197–219 (1995)

    Article  ADS  Google Scholar 

  67. 67

    Kirst, G., Schneider, R., Muller, P., von Storch, I. & Wefer, G. Late Quaternary temperature variability in the Benguela Current System derived from alkenones. Quat. Res. 52, 92–103 (1999)

    CAS  Article  Google Scholar 

  68. 68

    Nurnberg, D., Muller, A. & Schneider, R. Paleo-sea surface temperature calculations in the equatorial east Atlantic from Mg/Ca ratios in planktic foraminifera: A comparison to sea surface temperature estimates from U-37(K '), oxygen isotopes, and foraminiferal transfer function. Paleoceanography 15, 124–134 (2000)

    Article  ADS  Google Scholar 

  69. 69

    Budziak, D. in Berichte aus dem Fachbereich Geowissenschaften der Universität Bremen Vol. 170 114pp (2000)

    Google Scholar 

  70. 70

    Bard, E., Rostek, F. & Sonzogni, C. Interhemispheric synchrony of the last deglaciation inferred from alkenone palaeothermometry. Nature 385, 707–710 (1997)

    CAS  Article  ADS  Google Scholar 

  71. 71

    Pelejero, C., Grimalt, J., Heilig, S., Kienast, M. & Wang, L. High-resolution U-37(K) temperature reconstructions in the South China Sea over the past 220 kyr. Paleoceanography 14, 224–231 (1999)

    Article  ADS  Google Scholar 

  72. 72

    Wei, G., Deng, W., Liu, Y. & Li, X. High-resolution sea surface temperature records derived from foraminiferal Mg/Ca ratios during the last 260 ka in the northern South China Sea. Palaeogeogr. Palaeoclimatol. Palaeoecol. 250, 126–138 (2007)

    Article  Google Scholar 

  73. 73

    Oppo, D. & Sun, Y. Amplitude and timing of sea-surface temperature change in the northern South China Sea: dynamic link to the East Asian monsoon. Geology 33, 785–788 (2005)

    CAS  Article  ADS  Google Scholar 

  74. 74

    Koizumi, I. & Yamamoto, H. Paleoceanographic evolution of North Pacific surface water off Japan during the past 150,000 years. Mar. Micropaleontol. 74, 108–118 (2010)

    Article  ADS  Google Scholar 

  75. 75

    Dyez, K. & Ravelo, A. Late Pleistocene tropical Pacific temperature sensitivity to radiative greenhouse gas forcing. Geology 41, 23–26 (2013)

    CAS  Article  ADS  Google Scholar 

  76. 76

    Tachikawa, K., Timmermann, A., Vidal, L., Sonzogni, C. & Timm, O. CO2 radiative forcing and Intertropical Convergence Zone influences on western Pacific warm pool climate over the past 400 ka. Quat. Sci. Rev. 86, 24–34 (2014)

    Article  ADS  Google Scholar 

  77. 77

    Jasper, J. P., Hayes, J. M., Mix, A. C. & Prahl, F. G. Photosynthetic fractionation of 13C and concentrations of dissolved CO2 in the central equatorial Pacific during the last 255,000 years. Paleoceanography 9, 781–798 (1994)

    CAS  Article  ADS  PubMed  Google Scholar 

  78. 78

    Yu, P. et al. Influences of extratropical water masses on equatorial Pacific cold tongue variability during the past 160 ka as revealed by faunal evidence of planktic foraminifers. J. Quaternary Sci. 27, 921–931 (2012)

    Article  ADS  Google Scholar 

  79. 79

    Ho, S. et al. Sea surface temperature variability in the Pacific sector of the Southern Ocean over the past 700 kyr. Paleoceanography 27, (2012)

  80. 80

    Rincon-Martinez, D. et al. More humid interglacials in Ecuador during the past 500 kyr linked to latitudinal shifts of the equatorial front and the Intertropical Convergence Zone in the eastern tropical Pacific. Paleoceanography 25, (2010)

  81. 81

    Herbert, T. D. et al. Collapse of the California Current during glacial maxima linked to climate change on land. Science 293, 71–76 (2001)

    CAS  Article  ADS  PubMed  Google Scholar 

  82. 82

    Lea, D. W., Pak, D. K. & Spero, H. J. Climate impact of late quaternary equatorial pacific sea surface temperature variations. Science 289, 1719–1724 (2000)

    CAS  Article  ADS  PubMed  Google Scholar 

  83. 83

    Yamamato, M., Yamamuro, M. & Tanaka, Y. The California current system during the last 136,000 years: response of the North Pacific High to precessional forcing. Quat. Sci. Rev. 26, 405–414 (2007)

    Article  ADS  Google Scholar 

  84. 84

    Cortese, G., Abelmann, A. & Gersonde, R. A glacial warm water anomaly in the subantarctic Atlantic Ocean, near the Agulhas Retroflection. Earth Planet. Sci. Lett. 222, 767–778 (2004)

    CAS  Article  ADS  Google Scholar 

  85. 85

    Becquey, S. & Gersonde, R. A. 0.55-Ma paleotemperature record from the Subantarctic zone: Implications for Antarctic Circumpolar Current development. Paleoceanography 18, (2003)

  86. 86

    Sowers, T. et al. A 135,000-year Vostok-specmap common temporal framework. Paleoceanography 8, 737–766 (1993)

    Article  ADS  Google Scholar 

  87. 87

    Pichon, J. et al. Surface water temperature changes in the high latitudes of the southern hemisphere over the last glacial-interglacial cycle. Paleoceanography 7, 289–318 (1992)

    Article  ADS  Google Scholar 

  88. 88

    Sikes, E., Howard, W., Neil, H. & Volkman, J. Glacial-interglacial sea surface temperature changes across the subtropical front east of New Zealand based on alkenone unsaturation ratios and foraminiferal assemblages. Paleoceanography 17, (2002)

  89. 89

    Pahnke, K. & Sachs, J. Sea surface temperatures of southern midlatitudes 0–160 kyr BP. Paleoceanography 21, (2006)

  90. 90

    Timmermann, A., Sachs, J. & Timm, O. E. Assessing divergent SST behavior during the last 21 ka derived from alkenones and G. ruber-Mg/Ca in the equatorial Pacific. Paleoceanography 29, 680–696 (2014)

    Article  ADS  Google Scholar 

  91. 91

    Masson-Delmotte, V. et al. 383–464 (Cambridge University Press, 2013)

  92. 92

    Sepulchre, P. et al. H4 abrupt event and late Neanderthal presence in Iberia. Earth Planet. Sci. Lett. 258, 283–292 (2007)

    CAS  Article  ADS  Google Scholar 

  93. 93

    Menviel, L., Timmermann, A., Friedrich, T. & England, M. H. Hindcasting the continuum of Dansgaard-Oeschger variability: mechanisms, patterns and timing. Clim. Past 10, 63–77 (2014)

    Article  Google Scholar 

  94. 94

    Pinhasi, R., Fort, J. & Ammerman, A. J. Tracing the origin and spread of agriculture in Europe. PLoS Biol. 3, e410 (2005)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. 95

    Tallavaara, M., Luoto, M., Korhonen, N., Järvinen, H. & Seppä, H. Human population dynamics in Europe over the Last Glacial Maximum. Proc. Natl Acad. Sci. USA 112, 8232–8237 (2015)

    CAS  Article  ADS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank S. Feakins, M. Segschneider and Y. Chikamoto for discussions and L. Menviel for providing the data of the LOVECLIM Dansgaard-Oeschger hindcast experiment, A. Ganopolski for providing the ice-sheet forcing from CLIMBER and M. Tigchelaar for providing the PMIP3 model data. A.T. is supported through the US NSF (grants 1341311, 1400914).

Author information

Affiliations

Authors

Contributions

A.T. designed the research study, wrote the numerical model code for the human dispersal model, conducted the human dispersal numerical experiments and wrote the paper. T.F. ran the transient climate model simulation, conducted the model/proxy data comparison and contributed to the interpretation of the data.

Corresponding author

Correspondence to Axel Timmermann.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Additional information

The climate model and human dispersal model data are available on http://apdrc.soest.hawaii.edu/projects/HDM.

Reviewer Information

Nature thanks P. deMenocal, R. Jennings, M. Petraglia and the other anonymous reviewer(s) for their contribution to the peer review of this work.

Extended data figures and tables

Extended Data Figure 1 Schematics of modelling framework adopted for this study.

Extended Data Figure 2 Validation of climate model simulation for temperature with palaeo sea surface temperature (SST) reconstructions.

Pattern and temporal evaluation of leading Empirical Orthogonal Function (EOF1) of reconstructed and simulated SST. a, Principal components of the EOF1 (PC1) for SST from 63 palaeo-records25,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89(orange) covering the period 140–10 ka and simulated SST (blue) using every model grid point. b, Globally-averaged SST anomaly (K) from EOF1-based reconstruction. Colours as in a. c, EOF1-pattern (K) for 63 palaeo records25,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89(circles) and for simulated SST in global domain (shading).

Extended Data Figure 3 Comparison of LOVECLIM simulation with other PMIP3 CGCM Last Glacial Maximum simulations.

aj, Simulated annual mean rainfall differences (LGM versus pre-industrial) relative to the pre-industrial long-term annual mean rainfall (%) for ten different climate model simulations (MIROC-ESM (a), MIROC-TS (b), MPI-ESM-P (c), MRI-CGCM3 (d), GISS-E2-R (e), IPSL-CM5A-LR (f), CCSM4 (g), CNRM-CM5 (h), COSMOS-ASO (i) and FGOALS-g2 (j)) conducted as part of the Paleo Model Intercomparison Project, Phase 5 (PMIP5) (see Methods) and the LOVECLIM model (k) used here.

Extended Data Figure 4 Temperature forcing for HDM.

a, First empirical orthogonal function (EOF) of temperature (°C). b, The corresponding principal component. First EOF mode captures orbital-scale variability. c, Second empirical orthogonal function of temperature (°C). The corresponding principal component is shown in d. Second EOF mode captures Heinrich and Dansgaard–Oeschger events. In b, the main Marine Isotope Stages (MIS) are indicated with blue shading. In d, the blue shading indicates the main Heinrich stadials and the C-events.

Extended Data Figure 5 Net primary production forcing for HDM.

Same as Extended Data Fig. 4, but for primary production (kgC m−2 yr−1).

Extended Data Figure 6 Desert fraction forcing for HDM.

Same as Extended Data Fig. 4, but for desert fraction (%).

Extended Data Figure 7 Late Pleistocene human dispersal.

Snapshots of the simulated evolution of human density (individuals per 100 km2) over the past 125 ka using the parameters of the scenario B (late exit) experiment (see Methods) with full climate (orbital and millennial-scale) and sea level forcing and with human adaptation.

Extended Data Table 1 Parameter configurations of human dispersal model used in early exit (scenario A) and late exit (scenario B) scenarios
Extended Data Table 2 Sensitivity experiments conducted with human dispersal model using different climate and dispersal scenarios

Related audio

Supplementary information

Video of human density (individuals per 100 km2) in Human Dispersal Model simulation

This video shows scenario A (Early Exit) along with simulated sea-ice in LOVECLIM experiment and ice-sheet forcing from CLIMBER. (MOV 12688 kb)

Video of human density (individuals per 100 km2) in Human Dispersal Model simulation

This video shows scenario B (Late Exit) along with simulated sea-ice in LOVECLIM experiment and ice-sheet forcing from CLIMBER. (MOV 12314 kb)

PowerPoint slides

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Timmermann, A., Friedrich, T. Late Pleistocene climate drivers of early human migration. Nature 538, 92–95 (2016). https://doi.org/10.1038/nature19365

Download citation

Further reading

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing