Letter | Published:

Observed glacier and volatile distribution on Pluto from atmosphere–topography processes

Nature volume 540, pages 8689 (01 December 2016) | Download Citation

This article has been updated

Abstract

Pluto has a variety of surface frosts and landforms as well as a complex atmosphere1. There is ongoing geological activity related to the massive Sputnik Planitia glacier, mostly made of nitrogen (N2) ice mixed with solid carbon monoxide and methane2, covering the 4-kilometre-deep, 1,000-kilometre-wide basin of Sputnik Planitia1,3 near the anti-Charon point. The glacier has been suggested to arise from a source region connected to the deep interior, or from a sink collecting the volatiles released planetwide1. Thin deposits of N2 frost, however, were also detected at mid-northern latitudes and methane ice was observed to cover most of Pluto except for the darker, frost-free equatorial regions2. Here we report numerical simulations of the evolution of N2, methane and carbon monoxide on Pluto over thousands of years. The model predicts N2 ice accumulation in the deepest low-latitude basin and the threefold increase in atmospheric pressure that has been observed to occur since 19884,5,6. This points to atmospheric–topographic processes as the origin of Sputnik Planitia’s N2 glacier. The same simulations also reproduce the observed quantities of volatiles in the atmosphere and show frosts of methane, and sometimes N2, that seasonally cover the mid- and high latitudes, explaining the bright northern polar cap reported in the 1990s7,8 and the observed ice distribution in 20152. The model also predicts that most of these seasonal frosts should disappear in the next decade.

Access optionsAccess options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Change history

  • 30 November 2016

    ‘Sputnik Planum’ was replaced with ‘Sputnik Planitia’ throughout, and ref. 13 was updated.

References

  1. 1.

    et al. The Pluto system: initial results from its exploration by New Horizons. Science 350, aad1815 (2015)

  2. 2.

    et al. Surface compositions across Pluto and Charon. Science 351, aad9189 (2016)

  3. 3.

    et al. The geology of Pluto and Charon through the eyes of New Horizons. Science 351, 1284–1293 (2016)

  4. 4.

    et al. Changes in Pluto’s atmosphere: 1988–2006. Astrophys. J. 134, 1–13 (2007)

  5. 5.

    et al. Evidence that Pluto’s atmosphere does not collapse from occultations including the 2013 May 04 event. Icarus 246, 220–225 (2015)

  6. 6.

    et al. Pluto’s atmosphere from the 29 June 2015 ground-based stellar occultation at the time of the New Horizons flyby. Astrophys. J. Lett. 819, L38 (2016)

  7. 7.

    , & Albedo maps of Pluto and Charon—initial mutual event results. Icarus 97, 211–227 (1992)

  8. 8.

    , & HST high-resolution images and maps of Pluto. Astron. J. 113, 827–843 (1997)

  9. 9.

    , , & 3D global climate model of the Pluto atmosphere to interpret New Horizons observations, including the N2, CH4 and CO cycles and the formation of organic hazes. Abstract DPS 47, 105.12, (2015)

  10. 10.

    , , , & Thermal properties of Pluto’s and Charon’s surfaces from Spitzer observations. Icarus 214, 701–716 (2011)

  11. 11.

    & Seasonal nitrogen cycles on Pluto. Icarus 120, 247–265 (1996)

  12. 12.

    Pluto’s seasons: new predictions for New Horizons. Astrophys. J. 766, L22 (2013)

  13. 13.

    et al. The rapid formation of Sputnik Planitia early in Pluto's history. Nature (2016)

  14. 14.

    , & in Mars (eds , , & ) 934–968 (Univ. Arizona Press, 1992)

  15. 15.

    et al. The atmosphere of Pluto as observed by New Horizons. Science 351, aad8866 (2016)

  16. 16.

    New constraints on the surface of Pluto. Astron. Astrophys. 582, A39 (2015)

  17. 17.

    , , , & High resolution spectroscopy of Pluto’s atmosphere: detection of the 2.3 μm CH4 bands and evidence for carbon monoxide. Astron. Astrophys. 530, L4 (2011)

  18. 18.

    , , , & Pluto and Charon with the Hubble Space Telescope. II. Resolving changes on Pluto’s surface and a map for Charon. Astron. J. 139, 1128–1143 (2010)

  19. 19.

    et al. Exploring the spatial, temporal, and vertical distribution of methane in Pluto’s atmosphere. Icarus 246, 268–278 (2015)

  20. 20.

    & Pluto’s insolation history: latitudinal variations and effects on atmospheric pressure. Icarus 250, 405–412 (2015)

  21. 21.

    et al. A model for the overabundance of methane in the atmospheres of Pluto and Triton. Planet. Space Sci. 44, 1051–1063 (1996)

  22. 22.

    & Sublimation of ices of astrophysical interest: a bibliographic review. Planet. Space Sci. 57, 2053–2080 (2009)

  23. 23.

    et al. A post-New Horizons global climate model of Pluto including the N2, CH4 and CO cycles. Icarus (submitted)

Download references

Acknowledgements

We thank the New Horizons team for this successful mission. We also thank E. Lellouch, E. Millour and M. J. Wolff for comments on the manuscript. We are grateful to M. Vangvichith for her contribution to an early version of the model, and to the Institut de Formation Doctorale for supporting this work.

Author information

Affiliations

  1. Laboratoire de Météorologie Dynamique, IPSL, Sorbonne Universités, UPMC Université Paris 06, CNRS, BP99, 4 place Jussieu, 75005 Paris, France

    • Tanguy Bertrand
    •  & François Forget

Authors

  1. Search for Tanguy Bertrand in:

  2. Search for François Forget in:

Contributions

F.F. and T.B. designed and developed the model. T.B. performed the simulations. Both authors contributed to the writing of the manuscript.

Competing interests

The authors declare no competing financial interests.

Corresponding author

Correspondence to François Forget.

Extended data

About this article

Publication history

Received

Accepted

Published

DOI

https://doi.org/10.1038/nature19337

Further reading

  • Washboard and fluted terrains on Pluto as evidence for ancient glaciation

    • Oliver L. White
    • , Jeffrey M. Moore
    • , Alan D. Howard
    • , William B. McKinnon
    • , James T. Keane
    • , Kelsi N. Singer
    • , Tanguy Bertrand
    • , Stuart J. Robbins
    • , Paul M. Schenk
    • , Bernard Schmitt
    • , Bonnie J. Buratti
    • , S. Alan Stern
    • , Kimberly Ennico
    • , Cathy B. Olkin
    • , Harold A. Weaver
    •  & Leslie A. Young

    Nature Astronomy (2019)

  • Radio thermal emission from Pluto and Charon during the New Horizons encounter

    • M.K. Bird
    • , I.R. Linscott
    • , G.L. Tyler
    • , D.P. Hinson
    • , M. Pätzold
    • , M.E. Summers
    • , D.F. Strobel
    • , S.A. Stern
    • , H.A. Weaver
    • , C.B. Olkin
    • , L.A. Young
    • , K. Ennico
    • , J.M. Moore
    • , G.R. Gladstone
    • , W.M. Grundy
    • , C.C. DeBoy
    •  & M. Vincent

    Icarus (2019)

  • New Horizons Observations of the Atmosphere of Pluto

    • G. Randall Gladstone
    •  & Leslie A. Young

    Annual Review of Earth and Planetary Sciences (2019)

  • Lower atmosphere and pressure evolution on Pluto from ground-based stellar occultations, 1988–2016

    • E. Meza
    • , B. Sicardy
    • , M. Assafin
    • , J. L. Ortiz
    • , T. Bertrand
    • , E. Lellouch
    • , J. Desmars
    • , F. Forget
    • , D. Bérard
    • , A. Doressoundiram
    • , J. Lecacheux
    • , J. Marques Oliveira
    • , F. Roques
    • , T. Widemann
    • , F. Colas
    • , F. Vachier
    • , S. Renner
    • , R. Leiva
    • , F. Braga-Ribas
    • , G. Benedetti-Rossi
    • , J. I. B. Camargo
    • , A. Dias-Oliveira
    • , B. Morgado
    • , A. R. Gomes-Júnior
    • , R. Vieira-Martins
    • , R. Behrend
    • , A. Castro Tirado
    • , R. Duffard
    • , N. Morales
    • , P. Santos-Sanz
    • , M. Jelínek
    • , R. Cunniffe
    • , R. Querel
    • , M. Harnisch
    • , R. Jansen
    • , A. Pennell
    • , S. Todd
    • , V. D. Ivanov
    • , C. Opitom
    • , M. Gillon
    • , E. Jehin
    • , J. Manfroid
    • , J. Pollock
    • , D. E. Reichart
    • , J. B. Haislip
    • , K. M. Ivarsen
    • , A. P. LaCluyze
    • , A. Maury
    • , R. Gil-Hutton
    • , V. Dhillon
    • , S. Littlefair
    • , T. Marsh
    • , C. Veillet
    • , K.-L. Bath
    • , W. Beisker
    • , H.-J. Bode
    • , M. Kretlow
    • , D. Herald
    • , D. Gault
    • , S. Kerr
    • , H. Pavlov
    • , O. Faragó
    • , O. Klös
    • , E. Frappa
    • , M. Lavayssière
    • , A. A. Cole
    • , A. B. Giles
    • , J. G. Greenhill
    • , K. M. Hill
    • , M. W. Buie
    • , C. B. Olkin
    • , E. F. Young
    • , L. A. Young
    • , L. H. Wasserman
    • , M. Devogèle
    • , R. G. French
    • , F. B. Bianco
    • , F. Marchis
    • , N. Brosch
    • , S. Kaspi
    • , D. Polishook
    • , I. Manulis
    • , M. Ait Moulay Larbi
    • , Z. Benkhaldoun
    • , A. Daassou
    • , Y. El Azhari
    • , Y. Moulane
    • , J. Broughton
    • , J. Milner
    • , T. Dobosz
    • , G. Bolt
    • , B. Lade
    • , A. Gilmore
    • , P. Kilmartin
    • , W. H. Allen
    • , P. B. Graham
    • , B. Loader
    • , G. McKay
    • , J. Talbot
    • , S. Parker
    • , L. Abe
    • , Ph. Bendjoya
    • , J.-P. Rivet
    • , D. Vernet
    • , L. Di Fabrizio
    • , V. Lorenzi
    • , A. Magazzú
    • , E. Molinari
    • , K. Gazeas
    • , L. Tzouganatos
    • , A. Carbognani
    • , G. Bonnoli
    • , A. Marchini
    • , G. Leto
    • , R. Zanmar Sanchez
    • , L. Mancini
    • , B. Kattentidt
    • , M. Dohrmann
    • , K. Guhl
    • , W. Rothe
    • , K. Walzel
    • , G. Wortmann
    • , A. Eberle
    • , D. Hampf
    • , J. Ohlert
    • , G. Krannich
    • , G. Murawsky
    • , B. Gährken
    • , D. Gloistein
    • , S. Alonso
    • , A. Román
    • , J.-E. Communal
    • , F. Jabet
    • , S. deVisscher
    • , J. Sérot
    • , T. Janik
    • , Z. Moravec
    • , P. Machado
    • , A. Selva
    • , C. Perelló
    • , J. Rovira
    • , M. Conti
    • , R. Papini
    • , F. Salvaggio
    • , A. Noschese
    • , V. Tsamis
    • , K. Tigani
    • , P. Barroy
    • , M. Irzyk
    • , D. Neel
    • , J. P. Godard
    • , D. Lanoiselée
    • , P. Sogorb
    • , D. Vérilhac
    • , M. Bretton
    • , F. Signoret
    • , F. Ciabattari
    • , R. Naves
    • , M. Boutet
    • , J. De Queiroz
    • , P. Lindner
    • , K. Lindner
    • , P. Enskonatus
    • , G. Dangl
    • , T. Tordai
    • , H. Eichler
    • , J. Hattenbach
    • , C. Peterson
    • , L. A. Molnar
    •  & R. R. Howell

    Astronomy & Astrophysics (2019)

  • Primordial N 2 provides a cosmochemical explanation for the existence of Sputnik Planitia, Pluto

    • Christopher R. Glein
    •  & J. Hunter Waite

    Icarus (2018)

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.