This article has been updated


The presence of solid carbonaceous matter in cometary dust was established by the detection of elements such as carbon, hydrogen, oxygen and nitrogen in particles from comet 1P/Halley1,2. Such matter is generally thought to have originated in the interstellar medium3, but it might have formed in the solar nebula—the cloud of gas and dust that was left over after the Sun formed4. This solid carbonaceous material cannot be observed from Earth, so it has eluded unambiguous characterization5. Many gaseous organic molecules, however, have been observed6,7,8,9; they come mostly from the sublimation of ices at the surface or in the subsurface of cometary nuclei8. These ices could have been formed from material inherited from the interstellar medium that suffered little processing in the solar nebula10. Here we report the in situ detection of solid organic matter in the dust particles emitted by comet 67P/Churyumov–Gerasimenko; the carbon in this organic material is bound in very large macromolecular compounds, analogous to the insoluble organic matter found in the carbonaceous chondrite meteorites11,12. The organic matter in meteorites might have formed in the interstellar medium and/or the solar nebula, but was almost certainly modified in the meteorites’ parent bodies11. We conclude that the observed cometary carbonaceous solid matter could have the same origin as the meteoritic insoluble organic matter, but suffered less modification before and/or after being incorporated into the comet.

Access optionsAccess options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Change history

  • 05 October 2016

    The affiliation for author Y.L. was corrected.


  1. 1.

    et al. Composition of comet Halley dust particles from Giotto observations. Nature 321, 336–337 (1986)

  2. 2.

    et al. Composition of comet Halley dust particles from Vega observations. Nature 321, 280–282 (1986)

  3. 3.

    Making a comet nucleus. Astron. Astrophys. 330, 375–380 (1998)

  4. 4.

    , & A self-perpetuating catalyst for the production of complex organic molecules in protostellar nebulae. Astrophys. J. 673, L225–L228 (2008)

  5. 5.

    , & Carbonaceous components in the comet Halley dust. Geochim. Cosmochim. Acta 58, 4503–4512 (1994)

  6. 6.

    et al. Ethyl alcohol and sugar in comet C/2014 Q2 (Lovejoy). Sci. Adv. 1, e1500863 (2015)

  7. 7.

    et al. Inventory of the volatiles on comet 67P/Churyumov-Gerasimenko from Rosetta/ROSINA. Astron. Astrophys. 583, A1 (2015)

  8. 8.

    & The chemical composition of comets—emerging taxonomies and natal heritage. Annu. Rev. Astron. Astrophys. 49, 471–524 (2011)

  9. 9.

    et al. Prebiotic chemicals—amino acid and phosphorus—in the coma of comet 67P/Churyumov-Gerasimenko. Sci. Adv. 2, e1600285 (2016)

  10. 10.

    et al. New molecules found in comet C/1995 O1 (Hale-Bopp). Investigating the link between cometary and interstellar material. Astron. Astrophys. 353, 1101–1114 (2000)

  11. 11.

    , , & The origin and evolution of chondrites recorded in the elemental and isotopic compositions of their macromolecular organic matter. Geochim. Cosmochim. Acta 71, 4380–4403 (2007)

  12. 12.

    et al. Origin of insoluble organic matter in type 1 and 2 chondrites: new clues, new questions. Geochim. Cosmochim. Acta 136, 80–99 (2014)

  13. 13.

    et al. COSIMA, a high resolution time of flight spectrometer for secondary ion mass spectroscopy of cometary dust particles. Space Sci. Rev. 128, 823–867 (2007)

  14. 14.

    et al. Comet 67P/Churyumov–Gerasimenko sheds dust coat accumulated over the past four years. Nature 518, 216–218 (2015)

  15. 15.

    et al. Typology of dust particles collected by the COSIMA mass spectrometer in the inner coma of 67P/Churyumov Gerasimenko. Icarus 271, 76–97 (2016)

  16. 16.

    et al. Comet 67P/Churyumov–Gerasimenko: close-up on dust particle fragments. Astrophys. J. 816, L32 (2016)

  17. 17.

    et al. COSIMA calibration for the detection and characterisation of the cometary solid organic matter. Planet. Space Sci. 105, 1–25 (2015)

  18. 18.

    et al. Refractory and semi-volatile organics at the surface of comet 67P/Churyumov-Gerasimenko: insights from the VIRTIS/Rosetta imaging spectrometer. Icarus 272, 32–47 (2016)

  19. 19.

    et al. Characterization of laboratory analogs of interstellar/cometary organic residues using very high resolution mass spectrometry. Geochim. Cosmochim. Acta 118, 184–201 (2013)

  20. 20.

    et al. High molecular diversity of extraterrestrial organic matter in Murchison meteorite revealed 40 years after its fall. Proc. Natl Acad. Sci. USA 107, 2763–2768 (2010)

  21. 21.

    Organic compounds in carbonaceous meteorites. Nat. Prod. Rep. 19, 292–311 (2002)

  22. 22.

    & Distributed sources in comets. Space Sci. Rev. 138, 179–197 (2008)

  23. 23.

    et al. CHO-bearing organic compounds at the surface of 67P/Churyumov-Gerasimenko revealed by Ptolemy. Science 349, aab0673 (2015)

  24. 24.

    et al. Organic compounds on comet 67P/Churyumov-Gerasimenko revealed by COSAC mass spectrometry. Science 349, aab0689 (2015)

  25. 25.

    & The organic component in dust from comet Halley as measured by the PUMA mass spectrometer on board Vega 1. Nature 326, 755–760 (1987)

  26. 26.

    , , , & The origin of organic matter in the solar system: evidence from the interplanetary dust particles. Geochim. Cosmochim. Acta 67, 4791–4806 (2003)

  27. 27.

    et al. Ultracarbonaceous Antarctic micrometeorites, probing the Solar System beyond the nitrogen snow-line. Icarus 224, 243–252 (2013)

  28. 28.

    The Stardust mission: analyzing samples from the edge of the Solar System. Annu. Rev. Earth Planet. Sci. 42, 179–205 (2014)

  29. 29.

    , , , & in Organic Matter in Space Vol. 251 (ed. ) 293–298 (2008)

  30. 30.

    & Organic synthesis via irradiation and warming of ice grains in the Solar nebula. Science 336, 452–454 (2012)

  31. 31.

    et al. Comet 81P/Wild 2 under a microscope. Science 314, 1711–1716 (2006)

  32. 32.

    , , & The cometary and interstellar dust analyzer at comet 81P/Wild 2. Science 304, 1774–1776 (2004)

  33. 33.

    et al. Collecting cometary dust particles on metal blacks with the COSIMA instrument onboard ROSETTA. Planet. Space Sci. 103, 309–317 (2014)

  34. 34.

    , & Isotopic characterisation of kerogen-like material in the Murchison carbonaceous chondrite. Geochim. Cosmochim. Acta 51, 2527–2540 (1987)

Download references


COSIMA was built by a consortium led by the Max-Planck-Institut für Extraterrestrische Physik, Garching, Germany, in collaboration with: the Laboratoire de Physique et Chimie de l’Environnement et de l’Espace, Orléans, France; the Institut d’Astrophysique Spatiale, CNRS/Université Paris Sud, Orsay, France; the Finnish Meteorological Institute, Helsinki, Finland; the Universität Wuppertal, Wuppertal, Germany; von Hoerner und Sulger GmbH, Schwetzingen, Germany; the Universität der Bundeswehr, Neubiberg, Germany; the Institut für Physik, Forschungszentrum Seibersdorf, Seibersdorf, Austria; and the Institut für Weltraumforschung, Österreichische Akademie der Wissenschaften, Graz, Austria; and is led by the Max-Planck-Institut für Sonnensystemforschung, Göttingen, Germany. We acknowledge the support of the national funding agencies of Germany (Deutsches Zentrum für Luft- und Raumfahrt (DLR), grant 50 QP 1302), France (Centre National d’Étude Spatiales (CNES)), Austria, Finland and the European Space Agency (ESA) Technical Directorate. A.B. acknowledges support from the CNES and the Labex Exploration Spatiale des Environnements Planétaires (ESEP; no. 2011-LABX-030), and funding from the Idex Paris Sciences et Lettres (PSL; no. ANR-10-IDEX-0001-02). S.S. acknowledges support from the Swedish National Space Board grant (contracts 121/11 and 198/15). H.L., B.Z. and K.L. acknowledge Academy of Finland grant 277375. We thank the Rosetta Science Ground Segment at the European Space Astronomy Centre, the Rosetta Mission Operations Centre at the European Space Operations Centre, and the Rosetta Project at the European Space Research and Technology Centre for their work, which enabled the scientific return of the Rosetta mission.

Author information

Author notes

    • Nicolas Fray
    • , Anaïs Bardyn
    •  & Hervé Cottin

    These authors contributed equally to this work.


  1. Laboratoire Interuniversitaire des Systèmes Atmosphériques (LISA), UMR CNRS 7583, Université Paris Est Créteil et Université Paris Diderot, Institut Pierre Simon Laplace, 94000 Créteil, France

    • Nicolas Fray
    • , Anaïs Bardyn
    • , Hervé Cottin
    • , Paola Modica
    •  & François Raulin
  2. Laboratoire de Physique et Chimie de l’Environnement et de l’Espace (LPC2E), CNRS/Université d’Orléans, 45071 Orléans, France

    • Anaïs Bardyn
    • , Christelle Briois
    • , Paola Modica
    • , Laurent Thirkell
    •  & Roger Thomas
  3. Center for Space and Habitability (CSH), University of Bern, Sidlerstrasse 5, 3012 Bern, Switzerland

    • Kathrin Altwegg
    •  & Léna Le Roy
  4. Institut d’Astrophysique Spatiale, CNRS/Université Paris Sud, Bâtiment 121, 91405 Orsay, France

    • Donia Baklouti
    •  & Yves Langevin
  5. European Space Agency, European Space Research and Technology Centre, Keplerlaan 1, Postbus 299, 2200 AG Noordwijk, The Netherlands

    • Luigi Colangeli
  6. Centre de Sciences Nucléaires et de Sciences de la Matière, CNRS/IN2P3 – Université Paris Sud – UMR 8609, Université Paris-Saclay, Bâtiment 104, 91405 Orsay Campus, France

    • Cécile Engrand
  7. Max-Planck-Institut für Sonnensystemforschung, Justus-von-Liebig-Weg 3, 37077 Göttingen, Germany

    • Henning Fischer
    • , Harald Krüger
    • , Sihane Merouane
    • , John Paquette
    • , Oliver Stenzel
    • , Jochen Kissel
    •  & Martin Hilchenbach
  8. Universität Wuppertal, FB-E, Lehrstuhl für Messtechnik, Rainer-Gruenter-Str. 21, 42119 Wuppertal, Germany

    • Albrecht Glasmachers
  9. Max-Planck-Institut für Kernphysik, Saupfercheckweg 1, 69115 Heidelberg, Germany

    • Eberhard Grün
  10. Max-Planck-Institut für Extraterrestrische Physik, Giessenbachstrasse, 85748 Garching, Germany

    • Gerhard Haerendel
    •  & Herwig Höfner
  11. von Hoerner und Sulger GmbH, Schlossplatz 8, 68723 Schwetzingen, Germany

    • Hartmut Henkel
    •  & Andreas Koch
  12. Universität der Bundeswehr LRT-7, Werner Heisenberg Weg 39, 85577 Neubiberg, Germany

    • Klaus Hornung
  13. Institut für Planetologie, Universität Münster, Berghalde 31f, 69126 Heidelberg, Germany

    • Elmar K. Jessberger
  14. Tuorla Observatory, Department of Physics and Astronomy, University of Turku, Väisäläntie 20, 21500 Piikkiö, Finland

    • Harry Lehto
    •  & Boris Zaprudin
  15. Laboratory of Molecular Plant Biology, Department of Biochemistry, PharmaCity, Itäinen Pitkäkatu 4B 6 krs, 20520 University of Turku, Finland

    • Kirsi Lehto
  16. Institut de Planétologie et d’Astrophysique de Grenoble, UMR 5274, Université Grenoble Alpes, CNRS, 38000 Grenoble, France

    • François-Régis Orthous-Daunay
  17. Finnish Meteorological Institute, Observation Services, Erik Palménin Aukio 1, 00560 Helsinki, Finland

    • Jouni Rynö
    •  & Johan Silén
  18. European Space Agency, Scientific Support Office, Keplerlaan 1, Postbus 299, 2200 AG Noordwijk, The Netherlands

    • Rita Schulz
  19. Department of Chemistry, Materials and Surfaces, SP Technical Research Institute of Sweden, Box 857, 501 15 Borås, Sweden

    • Sandra Siljeström
  20. RC Seibersdorf Research GmbH Business Field Aerospace Technology, 2444 Seibersdorf, Austria

    • Wolfgang Steiger
  21. University of Chicago, Department of the Geophysical Sciences, 5734 South Ellis Avenue, Chicago, Illinois 60637, USA

    • Thomas Stephan
  22. Space Research Institute, Austrian Academy of Sciences, Schmiedlstrasse 6, 8042 Graz, Austria

    • Klaus Torkar
  23. Institute of Statistics and Mathematical Methods in Economics, Vienna University of Technology, Wiedner Hauptstrasse 7/105-6, 1040 Vienna, Austria

    • Kurt Varmuza
  24. Institut für Anorganische und Physikalische Chemie, FB 2, NW 2, A0110, Universität Bremen, 28334 Bremen, Germany

    • Karl-Peter Wanczek


  1. Search for Nicolas Fray in:

  2. Search for Anaïs Bardyn in:

  3. Search for Hervé Cottin in:

  4. Search for Kathrin Altwegg in:

  5. Search for Donia Baklouti in:

  6. Search for Christelle Briois in:

  7. Search for Luigi Colangeli in:

  8. Search for Cécile Engrand in:

  9. Search for Henning Fischer in:

  10. Search for Albrecht Glasmachers in:

  11. Search for Eberhard Grün in:

  12. Search for Gerhard Haerendel in:

  13. Search for Hartmut Henkel in:

  14. Search for Herwig Höfner in:

  15. Search for Klaus Hornung in:

  16. Search for Elmar K. Jessberger in:

  17. Search for Andreas Koch in:

  18. Search for Harald Krüger in:

  19. Search for Yves Langevin in:

  20. Search for Harry Lehto in:

  21. Search for Kirsi Lehto in:

  22. Search for Léna Le Roy in:

  23. Search for Sihane Merouane in:

  24. Search for Paola Modica in:

  25. Search for François-Régis Orthous-Daunay in:

  26. Search for John Paquette in:

  27. Search for François Raulin in:

  28. Search for Jouni Rynö in:

  29. Search for Rita Schulz in:

  30. Search for Johan Silén in:

  31. Search for Sandra Siljeström in:

  32. Search for Wolfgang Steiger in:

  33. Search for Oliver Stenzel in:

  34. Search for Thomas Stephan in:

  35. Search for Laurent Thirkell in:

  36. Search for Roger Thomas in:

  37. Search for Klaus Torkar in:

  38. Search for Kurt Varmuza in:

  39. Search for Karl-Peter Wanczek in:

  40. Search for Boris Zaprudin in:

  41. Search for Jochen Kissel in:

  42. Search for Martin Hilchenbach in:


N.F. and A.B. carried out the first identification of carbon in the particles presented here, and contributed to interpreting the results. N.F. provided the figures. H.C. contributed to the interpretation, and wrote the manuscript with the assistance of A.B. and N.F. J.K. and M.H. are the two successive managers of the project. K.A., L.C., A.G., E.G., G.H., H.He., H.Hö., K.H., E.K.J., J.K., A.K., Y.L., F.R., J.R., R.S., J.S., W.S., T.S., L.T., R.T., K.T., K.V. and K.-P.W. contributed to instrument development. H.F., M.H., A.K., Y.L., J.P., J.R., O.S. and L.T. contributed to instrument operations and data distribution. D.B., A.B., C.B., H.C., C.E., N.F., M.H., K.H., H.K., J.K., H.L., K.L. Y.L., L.L.R., S.M., P.M., F.-R.O.-D., J.P., J.R., J.S., S.S., O.S., L.T. and B.Z. contributed to instrument calibration and data analysis. Y.L. provided grain pictures. All authors discussed the results and commented on the manuscript.

Competing interests

The authors declare no competing financial interests.

Corresponding author

Correspondence to Nicolas Fray.

Reviewer Information

Nature thanks C. Alexander and the other anonymous reviewer(s) for their contribution to the peer review of this work.

After the proprietary period of six months, the data will be available in the ESA Planetary Science Archive (see Methods).

Extended data

About this article

Publication history






By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.