At a distance of 1.295 parsecs1, the red dwarf Proxima Centauri (α Centauri C, GL 551, HIP 70890 or simply Proxima) is the Sun’s closest stellar neighbour and one of the best-studied low-mass stars. It has an effective temperature of only around 3,050 kelvin, a luminosity of 0.15 per cent of that of the Sun, a measured radius of 14 per cent of the radius of the Sun2 and a mass of about 12 per cent of the mass of the Sun. Although Proxima is considered a moderately active star, its rotation period is about 83 days (ref. 3) and its quiescent activity levels and X-ray luminosity4 are comparable to those of the Sun. Here we report observations that reveal the presence of a small planet with a minimum mass of about 1.3 Earth masses orbiting Proxima with a period of approximately 11.2 days at a semi-major-axis distance of around 0.05 astronomical units. Its equilibrium temperature is within the range where water could be liquid on its surface5.

  • Subscribe to Nature for full access:



Additional access options:

Already a subscriber?  Log in  now or  Register  for online access.


  1. 1.

    Validation of the new Hipparcos reduction. Astron. Astrophys. 474, 653–664 (2007)

  2. 2.

    et al. Stellar diameters and temperatures. II: Main-sequence K- and M-stars. Astrophys. J. 757, 112 (2012)

  3. 3.

    & Age–rotation–activity relations for M dwarf stars. Acta Astron. 57, 149–172 (2007)

  4. 4.

    , , , & Flares from small to large: X-ray spectroscopy of Proxima Centauri with XMM-Newton. Astron. Astrophys. 416, 713–732 (2004)

  5. 5.

    et al. Habitable zones around main-sequence stars: new estimates. Astrophys. J. 765, 131 (2013)

  6. 6.

    et al. The HARPS search for Earth-like planets in the habitable zone. I. Very low-mass planets around HD 20794, HD 85512, and HD 192310. Astron. Astrophys. 534, A58 (2011)

  7. 7.

    & The HARPS-TERRA Project. I: description of the algorithms, performance, and new measurements on a few remarkable stars observed by HARPS. Astrophys. J. Suppl. Ser. 200, 15 (2012)

  8. 8.

    et al. Attaining Doppler precision of 3 m s−1. Publ. Astron. Soc. Pacif. 108, 500–509 (1996)

  9. 9.

    et al. The low-level radial velocity variability in Barnard’s star (= GJ 699): secular acceleration, indications for convective redshift, and planet mass limits. Astron. Astrophys. 403, 1077–1087 (2003)

  10. 10.

    et al. Two planetary companions around the K7 dwarf GJ 221: a hot super-Earth and a candidate in the sub-Saturn desert range. Astrophys. J. 771, 42 (2013)

  11. 11.

    , , , & High-cadence spectroscopy of M-dwarfs. I: analysis of systematic effects in HARPS-N line profile measurements on the bright binary GJ 725A+B. Mon. Not. R. Astron. Soc. 459, 3551B (2016)

  12. 12.

    et al. A Pluto-like radius and a high albedo for the dwarf planet Eris from an occultation. Nature 478, 493–496 (2011)

  13. 13.

    et al. Las Cumbres Observatory Global Telescope Network. Publ. Astron. Soc. Pacific 125, 1031–1055 (2013)

  14. 14.

    The impact of red noise in radial velocity planet searches: only three planets orbiting GJ 581? Mon. Not. R. Astron. Soc. 429, 2052–2068 (2013)

  15. 15.

    , , , & Bayesian search for low-mass planets around nearby M dwarfs—estimates for occurrence rate based on global detectability statistics. Mon. Not. R. Astron. Soc. 441, 1545–1569 (2014)

  16. 16.

    , , & Dram: efficient adaptive MCMC. Stat. Comput. 16, 339–354 (2006)

  17. 17.

    , & Ghost in the time series: no planet for Alpha Cen B. Mon. Not. R. Astron. Soc. 456, L6–L10 (2016)

  18. 18.

    et al. The HARPS search for southern extra-solar planets. X: A msini = 11M planet around the nearby spotted M dwarf GJ 674. Astron. Astrophys. 474, 293–299 (2007)

  19. 19.

    et al. Precision radial velocities of 15 M5–M9 dwarfs. Mon. Not. R. Astron. Soc. 439, 3094–3113 (2014)

  20. 20.

    Optimizing the search for transiting planets in long time series. Astron. Astrophys. 561, A138 (2014)

  21. 21.

    et al. The inner edge of the habitable zone for synchronously rotating planets around low-mass stars using general circulation models. Astrophys. J. 819, 84 (2016)

  22. 22.

    & The moderate magnetic field of the flare star Proxima Centauri. Astron. Astrophys. 489, L45–L48 (2008)

  23. 23.

    et al. Effects of M dwarf magnetic fields on potentially habitable planets. Astron. Astrophys. 557, A67 (2013)

  24. 24.

    , , & The influence of thermal evolution in the magnetic protection of terrestrial planets. Astrophys. J. 770, 23 (2013)

  25. 25.

    et al. Water loss from Earth-sized planets in the habitable zones of ultracool dwarfs: implications for the planets of TRAPPIST-1. Preprint at (2016)

  26. 26.

    , & Three-dimensional interaction between a planet and an isothermal gaseous disk. I: corotation and Lindblad torques and planet migration. Astrophys. J. 565, 1257–1274 (2002)

  27. 27.

    Aerodynamics of solid bodies in the solar nebula. Mon. Not. R. Astron. Soc. 180, 57–70 (1977)

  28. 28.

    et al. Combining high-dispersion spectroscopy with high contrast imaging: probing rocky planets around our nearest neighbors. Astron. Astrophys. 576, A59 (2015)

  29. 29.

    A roadmap to interstellar flight. Preprint at (2016)

  30. 30.

    et al. Accurate masses of very low mass stars. IV. Improved mass-luminosity relations. Astron. Astrophys. 364, 217–224 (2000)

  31. 31.

    , & An adaptive Metropolis algorithm. Bernouilli 7, 223 (2001)

  32. 32.

    et al. Signals embedded in the radial velocity noise: periodic variations in the τ Ceti velocities. Astron. Astrophys. 551, A79 (2013)

  33. 33.

    , , , & Equations of state valculations by fast computing machines. J. Chem. Phys. 21, 1087–1092 (1953)

  34. 34.

    Monte Carlo sampling methods using Markov chains and their applications. Biometrika 57, 97–109 (1970)

  35. 35.

    & Approximate Bayesian inference with the weighted likelihood bootstrap. J. R. Stat.Soc. B 56, 3–48 (1994)

  36. 36.

    A new cold sub-Saturnian candidate planet orbiting GJ 221. Mon. Not. R. Astron. Soc. 440, L1–L5 (2014)

  37. 37.

    & Efficient fitting of multiplanet Keplerian models to radial velocity and astrometry data. Astrophys. J. Suppl. Ser. 182, 205–215 (2009)

  38. 38.

    Studies in astronomical time series analysis. I: modeling random processes in the time domain. Astrophys. J. Suppl. Ser. 45, 1–71 (1981)

  39. 39.

    Evidence for nine planets in the HD 10180 system. Astron. Astrophys. 543, A52 (2012)

  40. 40.

    & Up to four planets around the M dwarf GJ 163: sensitivity of Bayesian planet detection criteria to prior choice. Astron. Astrophys. 556, A111 (2013)

  41. 41.

    Statistical Decision Theory and Bayesian Analysis Section 3.3 (Springer, 1980)

  42. 42.

    et al. A dynamically-packed planetary system around GJ 667C with three super-Earths in its habitable zone. Astron. Astrophys. 556, A126 (2013)

  43. 43.

    Least-squares frequency analysis of unequally spaced data. Astrophys. Space Sci. 39, 447–462 (1976)

  44. 44.

    Studies in astronomical time series analysis. II: statistical aspects of spectral analysis of unevenly spaced data. Astrophys. J. 263, 835–853 (1982)

  45. 45.

    , & The M dwarf planet search programme at the ESO VLT + UVES: a search for terrestrial planets in the habitable zone of M dwarfs. Astron. Astrophys. 505, 859–871 (2009)

  46. 46.

    Detectability of extrasolar planets in radial velocity surveys. Mon. Not. R. Astron. Soc. 354, 1165–1176 (2004)

  47. 47.

    Estimation of periods from unequally spaced observations. Astron. J. 86, 619–624 (1981)

  48. 48.

    Accounting for velocity jitter in planet search surveys. Mon. Not. R. Astron. Soc. 393, 969–978 (2009)

  49. 49.

    & Toward detection of terrestrial planets in the habitable zone of our closest neighbor: Proxima Centauri. Astron. Astrophys. 488, 1149–1153 (2008)

  50. 50.

    et al. The HARPS search for southern extra-solar planets. XXXI: the M-dwarf sample. Astron. Astrophys. 549, A109 (2013)

  51. 51.

    et al. No planet for HD 166435. Astron. Astrophys. 379, 279–287 (2001)

  52. 52.

    , , & Stellar activity masquerading as planets in the habitable zone of the M dwarf Gliese 581. Science 345, 440–444 (2014)

  53. 53.

    & Zeeman–Doppler imaging of active stars. V: sensitivity of maximum entropy magnetic maps to field orientation. Astron. Astrophys. 326, 1135–1142 (1997)

  54. 54.

    et al. Red Optical Planet Survey: a new search for habitable Earths in the southern sky. Mon. Not. R. Astron. Soc. 424, 591–604 (2012)

  55. 55.

    , , & Numerical Recipes in FORTRAN. The Art of Scientific Computing 2nd edn, Section 4.1 (Cambridge Univ. Press, 1992)

  56. 56.

    et al. An activity catalogue of southern stars. Mon. Not. R. Astron. Soc. 372, 163–173 (2006)

  57. 57.

    et al. Metallicities and activities of southern stars. Astron. Astrophys. 485, 571–584 (2008)

  58. 58.

    , & AstroImageJ: image processing and photometric extraction for ultra-precise astronomical light curves. Preprint at (2016)

  59. 59.

    et al. High-precision photometry by telescope defocussing. VI: WASP-24, WASP-25 and WASP-26. Mon. Not. R. Astron. Soc. 444, 776–789 (2014)

  60. 60.

    & Radial velocity planets de-aliased: a new, short period for super-Earth 55 Cnc e. Astrophys. J. 722, 937–953 (2010)

  61. 61.

    , & A simple method to estimate radial velocity variations due to stellar activity using photometry. Mon. Not. R. Astron. Soc. 419, 3147–3158 (2012)

  62. 62.

    et al. Long-term magnetic activity of a sample of M-dwarf stars from the HARPS program. II: activity and radial velocity. Astron. Astrophys. 541, A9 (2012)

  63. 63.

    et al. Chromospheric variations in main-sequence stars. Astrophys. J. 438, 269–287 (1995)

  64. 64.

    , & Limits in the application of harmonic analysis to pulsating stars. Astron. Astrophys. 581, A89 (2015)

Download references


We thank E. Gerlach, R. Street and U. Seemann for their support to the science preparations. We thank P. Micakovic, M. M. Mutter (QMUL), R. Ivison, G. Hussain, I. Saviane, O. Sandu, L. L. Christensen, R. Hook and the personnel at La Silla (ESO) for making the PRD campaign possible. The authors acknowledge support from the following funding grants: Leverhulme Trust/UK RPG-2014-281 (H.R.A.J., G.A.-E. and M.T.); MINECO/Spain AYA-2014-54348-C3-1-R (P.J.A., C.R.-L., Z.M.B. and E.R.); MINECO/Spain ESP2014-54362-P (M.J.L.-G.); MINECO/Spain AYA-2014-56637-C2-1-P (J.L.O. and N.M.); J.A./Spain 2012-FQM1776 (J.L.O. and N.M.); CATA-Basal/Chile PB06 Conicyt (J.S.J.); Fondecyt/Chile project #1161218 (J.S.J.); STFC/UK ST/M001008/1 (R.P.N., G.A.L.C. and G.A.-E.); STFC/UK ST/L000776/1 (J.B.); ERC/EU Starting Grant #279347 (A.R., L.F.S. and S.V.J.); DFG/Germany Research Grants RE 1664/9-2 (A.R.); RE 1664/12-1 (M.Z.); DFG/Germany Colloborative Research Center 963 (C.J.M. and S.D.); DFG/Germany Research Training Group 1351 (L.F.S.); and NSF/USA grant AST-1313075 (M.E.). Study based on observations made with ESO Telescopes at the La Silla Paranal Observatory under programmes 096.C-0082 and 191.C-0505. Observations were obtained with ASH2, which is supported by the Instituto de Astrofísica de Andalucía and Astroimagen. This work makes use of observations from the LCOGT network. We acknowledge the effort of the UVES/M-dwarf and the HARPS/Geneva teams, who obtained a substantial amount of the data used in this work.

Author information


  1. School of Physics and Astronomy, Queen Mary University of London, 327 Mile End Road, London E1 4NS, UK

    • Guillem Anglada-Escudé
    • , Gavin A. L. Coleman
    • , Richard P. Nelson
    • , Sijme-Jan Paardekooper
    •  & John P. Strachan
  2. Instituto de Astrofísica de Andalucía – Consejo Superior de Investigaciones Científicas, Glorieta de la Astronomía S/N, E-18008 Granada, Spain

    • Pedro J. Amado
    • , Zaira M. Berdiñas
    • , Marίa J. López-González
    • , Nicolás Morales
    • , José L. Ortiz
    • , Eloy Rodríguez
    •  & Cristina Rodrίguez-López
  3. Department of Physical Sciences, Open University, Walton Hall, Milton Keynes MK7 6AA, UK

    • John Barnes
  4. Carnegie Institution of Washington, Department of Terrestrial Magnetism, 5241 Broad Branch Road NW, Washington DC 20015, USA

    • R. Paul Butler
  5. Astroimagen, C. Abad y Lasierra, 58 Bis, 6-2, 07800 Ibiza, Spain

    • Ignacio de la Cueva
  6. Institut für Astrophysik, Georg-August-Universität Göttingen, Friedrich-Hund-Platz 1, 37077 Göttingen, Germany

    • Stefan Dreizler
    • , Benjamin Giesers
    • , Sandra V. Jeffers
    • , Christopher J. Marvin
    • , Ansgar Reiners
    • , Luis F. Sarmiento
    •  & Mathias Zechmeister
  7. McDonald Observatory, the University of Texas at Austin, 2515 Speedway, C1400, Austin, Texas 78712, USA

    • Michael Endl
  8. Departamento de Astronomía, Universidad de Chile, Camino El Observatorio 1515, Las Condes, Santiago, Chile

    • James S. Jenkins
  9. Centre for Astrophysics Research, Science & Technology Research Institute, University of Hertfordshire, Hatfield AL10 9AB, UK

    • Hugh R. A. Jones
    •  & Mikko Tuomi
  10. Warsaw University Observatory, Aleje Ujazdowskie 4, Warszawa, Poland

    • Marcin Kiraga
  11. Max-Planck-Institut für Astronomie, Königstuhl 17, 69117 Heidelberg, Germany

    • Martin Kürster
  12. Laboratoire Univers et Particules de Montpellier, Université de Montpellier, Place E. Bataillon—CC 72, 34095 Montpellier Cédex 05, France

    • Julien Morin
  13. Department of Earth and Planetary Sciences, Weizmann Institute of Science, 234 Herzl Street, Rehovot 76100, Israel

    • Aviv Ofir
  14. Astronomisches Rechen-Institut, Mönchhofstrasse 12–14, 69120 Heidelberg, Germany

    • Yiannis Tsapras


  1. Search for Guillem Anglada-Escudé in:

  2. Search for Pedro J. Amado in:

  3. Search for John Barnes in:

  4. Search for Zaira M. Berdiñas in:

  5. Search for R. Paul Butler in:

  6. Search for Gavin A. L. Coleman in:

  7. Search for Ignacio de la Cueva in:

  8. Search for Stefan Dreizler in:

  9. Search for Michael Endl in:

  10. Search for Benjamin Giesers in:

  11. Search for Sandra V. Jeffers in:

  12. Search for James S. Jenkins in:

  13. Search for Hugh R. A. Jones in:

  14. Search for Marcin Kiraga in:

  15. Search for Martin Kürster in:

  16. Search for Marίa J. López-González in:

  17. Search for Christopher J. Marvin in:

  18. Search for Nicolás Morales in:

  19. Search for Julien Morin in:

  20. Search for Richard P. Nelson in:

  21. Search for José L. Ortiz in:

  22. Search for Aviv Ofir in:

  23. Search for Sijme-Jan Paardekooper in:

  24. Search for Ansgar Reiners in:

  25. Search for Eloy Rodríguez in:

  26. Search for Cristina Rodrίguez-López in:

  27. Search for Luis F. Sarmiento in:

  28. Search for John P. Strachan in:

  29. Search for Yiannis Tsapras in:

  30. Search for Mikko Tuomi in:

  31. Search for Mathias Zechmeister in:


In the author list, after G.A.-E., the authors are listed in alphabetical order. G.A.-E. led the PRD campaign, observing proposals and organized the manuscript. P.J.A. led observing proposals and organized and supported the Instituto de Astrofisica de Andalucía team through research grants. M.T. obtained the early signal detections and most of the Bayesian analyses. J.S.J., J.B., Z.M.B. and H.R.A.J. participated in the analyses and obtained activity measurements. Z.M.B. also led observing proposals. H.R.A.J. funded several co-authors via research grants. M. Kuerster and M.E. provided the extracted UVES spectra, and R.P.B. re-derived radial velocity measurements. C.R.-L. coordinated photometric follow-up campaigns. E.R. led the ASH2 team and related reductions (M.J.L.-G., I.d.l.C., J.L.O. and N.M.). Y.T. led the LCOGT proposals, campaign and reductions. M.Z. obtained observations and performed analyses on HARPS and UVES spectra. A.O. analysed time series and transit searches. J.M., S.V.J. and A.R. analysed stellar activity data. A.R. funded several co-authors via research grants. R.P.N., G.A.L.C., S.-J.P., S.D. and B.G. did dynamical studies and studied the planet formation context. M. Kiraga provided early access to time series from the ASAS survey. C.J.M. and L.F.S. participated in the HARPS campaigns. All authors contributed to the preparation of observing proposals and the manuscript.

Competing interests

The authors declare no competing financial interests.

Corresponding author

Correspondence to Guillem Anglada-Escudé.

Reviewer Information

Nature thanks A. Hatzes and D. Queloz for their contribution to the peer review of this work.

Extended data

Supplementary information

Zip files

  1. 1.

    Supplementary Data

    This zipped file contains the time-series used in the paper. All time-series are given as plain ASCII/CSV files (columns separated by commas) and follow the same format. See the README file within the zip folder for details.