Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Synergistic, ultrafast mass storage and removal in artificial mixed conductors

A Corrigendum to this article was published on 26 October 2016

This article has been updated

Abstract

Mixed conductors—single phases that conduct electronically and ionically—enable stoichiometric variations in a material and, therefore, mass storage and redistribution, for example, in battery electrodes. We have considered how such properties may be achieved synergistically in solid two-phase systems, forming artificial mixed conductors. Previously investigated composites suffered from poor kinetics and did not allow for a clear determination of such stoichiometric variations. Here we show, using electrochemical and chemical methods, that a melt-processed composite of the ‘super-ionic’ conductor RbAg4I5 and the electronic conductor graphite exhibits both a remarkable silver excess and a silver deficiency, similar to those found in single-phase mixed conductors, even though such behaviour is not possible in the individual phases. Furthermore, the kinetics of silver uptake and release is very fast. Evaluating the upper limit of the relaxation time set by interfacial ambipolar diffusion reveals chemical diffusion coefficients that are even higher than those achieved for sodium chloride in bulk liquid water. These results could potentially stimulate systematic research into powerful, even mesoscopic, artificial mixed conductors.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Silver excess and deficiency through interfacial storage.
Figure 2: Rapid silver dissolution in the job-sharing composite.
Figure 3: Rapid job-sharing diffusion.
Figure 4: Ultrafast performance of electrochemical devices using RbAg4I5:graphite.

Similar content being viewed by others

Change history

References

  1. Kudo, T. & Fueki, K. Solid State Ionics Ch. 5, 47–63 (VCH, 1990)

    Google Scholar 

  2. Tuller, H. L. Semiconduction and mixed ionic–electronic conduction in nonstoichiometric oxides: impact and control. Solid State Ion. 94, 63–74 (1997)

    Article  CAS  Google Scholar 

  3. Riess, I. Mixed ionic–electronic conductors—material properties and applications. Solid State Ion. 157, 1–17 (2003)

    Article  CAS  Google Scholar 

  4. Maier, J. Nanoionics: ion transport and electrochemical storage in confined systems. Nat. Mater. 4, 805–815 (2005)

    Article  ADS  CAS  PubMed  Google Scholar 

  5. Wagner, C. Equations for transport in solid oxides and sulfides of transition metals. Prog. Solid State Chem. 10, 3–16 (1975)

    Article  Google Scholar 

  6. Jamnik, J. & Maier, J. Generalised equivalent circuits for mass and charge transport: chemical capacitance and its implications. Phys. Chem. Chem. Phys. 3, 1668–1678 (2001)

    Article  CAS  Google Scholar 

  7. Maier, J. Thermodynamics of electrochemical lithium storage. Angew. Chem. Int. Ed. 52, 4998–5026 (2013)

    Article  CAS  Google Scholar 

  8. Bouwmeester, H. J. M. & Burggraaf, A. J. in The CRC Handbook of Solid State Electrochemistry (eds Gellings, P. J. & Bouwmeester, H. J. M. ) 481–554 (CRC Press, 1997)

  9. Kim, I.-D., Rothschild, A. & Tuller, H. L. Advances and new directions in gas-sensing devices. Acta Mater. 61, 974–1000 (2013)

    Article  CAS  Google Scholar 

  10. Maier, J. & Pfundtner, G. Defect chemistry of the high-Tc superconductors. Adv. Mater. 3, 292–297 (1991)

    Article  CAS  Google Scholar 

  11. Waser, R. & Aono, M. Nanoionics-based resistive switching memories. Nat. Mater. 6, 833–840 (2007)

    Article  ADS  CAS  PubMed  Google Scholar 

  12. Nilges, T. et al. Reversible switching between p- and n-type conduction in the semiconductor Ag10Te4Br3 . Nat. Mater. 8, 101–108 (2009)

    Article  ADS  CAS  PubMed  Google Scholar 

  13. Schmalzried, H. Ag2S—the physical chemistry of an inorganic material. Prog. Solid State Chem. 13, 119–157 (1980)

    Article  CAS  Google Scholar 

  14. Bürgermeister, A. & Sitte, W. Chemical diffusion in β-Ag2Te. Solid State Ion. 141–142, 331–334 (2001)

    Article  Google Scholar 

  15. Beck, G. & Janek, J. Coulometric titration at low temperatures—nonstoichiometric silver selenide. Solid State Ion. 170, 129–133 (2004)

    Article  CAS  Google Scholar 

  16. Becker, K. D., Schmalzried, H. & von Wurmb, V. The chemical diffusion coefficient in (low temperature) α-Ag2S determined by an electrochemical relaxation method. Solid State Ion. 11, 213–219 (1983)

    Article  CAS  Google Scholar 

  17. Sitte, W. Chemical diffusion in mixed conductors: α′-Ag2Te and β-Ag2Se. Solid State Ion. 94, 85–90 (1997)

    Article  CAS  Google Scholar 

  18. Oehsen, U. V. & Schmalzried, H. Thermodynamic investigations of Ag2Se. Ber. Bunsenges. Phys. Chem 85, 7–14 (1981)

    Article  Google Scholar 

  19. Kanai, H. et al. Defect chemistry of La2−xSrxCuO4−δ: oxygen nonstoichiometry and thermodynamic stability. J. Solid State Chem. 131, 150–159 (1997)

    Article  ADS  CAS  Google Scholar 

  20. Bakken, E., Norby, T. & Stølen, S. Nonstoichiometry and reductive decomposition of CaMnO3−δ . Solid State Ion. 176, 217–223 (2005)

    Article  CAS  Google Scholar 

  21. Mueller, D. N., De Souza, R. A., Yoo, H.-I. & Martin, M. Phase stability and oxygen nonstoichiometry of highly oxygen-deficient perovskite-type oxides: a case study of (Ba, Sr)(Co, Fe)O3−δ . Chem. Mater. 24, 269–274 (2012)

    Article  CAS  Google Scholar 

  22. Funke, K. AgI-type solid electrolytes. Prog. Solid State Chem. 11, 345–402 (1976)

    Article  Google Scholar 

  23. Sunarso, J. et al. Mixed ionic–electronic conducting (MIEC) ceramic-based membranes for oxygen separation. J. Membr. Sci. 320, 13–41 (2008)

    Article  CAS  Google Scholar 

  24. Maier, J. in Modern Aspects of Electrochemistry Vol. 41 (eds Vayenas, C. et al.) 1–138 (Springer, 2007)

    Article  CAS  Google Scholar 

  25. Fu, L., Chen, C.-C., Samuelis, D. & Maier, J. Thermodynamics of lithium storage at abrupt junctions: modeling and experimental evidence. Phys. Rev. Lett. 112, 208301 (2014)

    Article  ADS  CAS  Google Scholar 

  26. Fu, L. et al. “Job-sharing” storage of hydrogen in Ru/Li2O nanocomposites. Nano Lett. 15, 4170–4175 (2015)

    Article  ADS  CAS  PubMed  Google Scholar 

  27. Maier, J. Kröger–Vink diagrams for boundary regions. Solid State Ion. 32–33, 727–733 (1989)

    Article  Google Scholar 

  28. Hagenbeck, R. & Waser, R. Influence of temperature and interface charge on the grain-boundary conductivity in acceptor-doped SrTiO3 ceramics. J. Appl. Phys. 83, 2083–2092 (1998)

    Article  ADS  CAS  Google Scholar 

  29. Chiang, Y. M., Lavik, E. B., Kosacki, I., Tuller, H. L. & Ying, J. Y. Defect and transport properties of nanocrystalline CeO2−x . Appl. Phys. Lett. 69, 185–187 (1996)

    Article  ADS  CAS  Google Scholar 

  30. Kim, S. & Maier, J. On the conductivity mechanism of nanocrystalline ceria. J. Electrochem. Soc. 149, J73–J83 (2002)

    Article  CAS  Google Scholar 

  31. Frömling, T. et al. Oxygen tracer diffusion in donor doped barium titanate. J. Appl. Phys. 110, 043531 (2011)

    Article  ADS  CAS  Google Scholar 

  32. Kim, S., Merkle, R. & Maier, J. Oxygen nonstoichiometry of nanosized ceria powder. Surf. Sci. 549, 196–202 (2004)

    Article  ADS  CAS  Google Scholar 

  33. Lupetin, P., Gregori, G. & Maier, J. Mesoscopic charge carriers chemistry in nanocrystalline SrTiO3 . Angew. Chem. Int. Ed. 49, 10123–10126 (2010)

    Article  CAS  Google Scholar 

  34. Petuskey, W. T. Interfacial effects on Ag:S nonstoichiometry in silver sulfide/alumina composites. Solid State Ion. 21, 117–129 (1986)

    Article  CAS  Google Scholar 

  35. Tatar, R. C. & Rabii, S. Electronic properties of graphite: a unified theoretical study. Phys. Rev. B 25, 4126–4141 (1982)

    Article  ADS  CAS  Google Scholar 

  36. Huang, X., Qi, X., Boey, F. & Zhang, H. Graphene-based composites. Chem. Soc. Rev. 41, 666–686 (2012)

    Article  CAS  PubMed  Google Scholar 

  37. Hull, M. N. & Pilla, A. A. The transient behavior of graphite-silver iodide and platinum-silver iodide interfaces in a solid-state system. J. Electrochem. Soc. 118, 72–78 (1971)

    Article  CAS  Google Scholar 

  38. Oxley, J. A solid state electrochemical capacitor. 141st Meeting of The Electrochemical Society abstr. no. 175, p. 446 (Houston, 1972)

    Google Scholar 

  39. Raleigh, D. O. Electrode capacitance in silver-halide solid electrolyte cells. I. Room temperature graphite and platinum electrodes. J. Electrochem. Soc. 121, 632–639 (1974)

    Article  CAS  Google Scholar 

  40. Armstrong, R. D. & Horrocks, B. R. The double layer structure at the metal–solid electrolyte interface. Solid State Ion. 94, 181–187 (1997)

    Article  CAS  Google Scholar 

  41. Scrosati, B., Germano, G. & Pistoia, G. Electrochemical properties of RbAg4I5 solid electrolyte. I. Conductivity studies. J. Electrochem. Soc. 118, 86–89 (1971)

    Article  Google Scholar 

  42. Barker, J., Pynenburg, R., Koksbang, R. & Saidi, M. Y. An electrochemical investigation into the lithium insertion properties of LixCoO2 . Electrochim. Acta 41, 2481–2488 (1996)

    Article  CAS  Google Scholar 

  43. Maier, J. Mass transport in the presence of internal defect reactions—concept of conservative ensembles: I, chemical diffusion in pure compounds. J. Am. Ceram. Soc. 76, 1212–1217 (1993)

    Article  CAS  Google Scholar 

  44. De Levie, R. in Advances in Electrochemistry and Electrochemical Engineering Vol. 6 (ed. Delahay, P. ) 329–397 (Wiley-Interscience, 1967)

    CAS  Google Scholar 

  45. Heyne, L. & Beekman, N. Electronic transport in calcia-stabilized zirconia. Proc. Brit. Ceram. Soc. 19, 229–263 (1971)

    Google Scholar 

  46. Pech, D. et al. Ultrahigh-power micrometre-sized supercapacitors based on onion-like carbon. Nat. Nanotechnol. 5, 651–654 (2010)

    Article  ADS  CAS  PubMed  Google Scholar 

  47. Sata, N., Eberman, K., Eberl, K. & Maier, J. Mesoscopic fast ion conduction in nanometre-scale planar heterostructures. Nature 408, 946–949 (2000)

    Article  ADS  CAS  PubMed  Google Scholar 

  48. Cussler, E. L. Diffusion: Mass Transfer in Fluid Systems (Cambridge Univ. Press, 1997)

  49. Bredikhin, S., Hattori, T. & Ishigame, M. Ambipolar diffusion in RbAg4I5 . Solid State Ion. 67, 311–316 (1994)

    Article  CAS  Google Scholar 

  50. Mizusaki, J. & Fueki, K. Electrochemical determinations of the chemical diffusion coefficient and non-stoichiometry in AgCl. Solid State Ion. 6, 85–91 (1982)

    Article  CAS  Google Scholar 

  51. Taberna, P. L., Simon, P. & Fauvarque, J. F. Electrochemical characteristics and impedance spectroscopy studies of carbon-carbon supercapacitors. J. Electrochem. Soc. 150, A292–A300 (2003)

    Article  CAS  Google Scholar 

  52. Sitte, W. Electrochemical cell for composition dependent measurements of chemical diffusion coefficients and ionic conductivities on mixed conductors and application to silver telluride at 160 °C. Solid State Ion. 59, 117–124 (1993)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We acknowledge technical support by A. Fuchs (N2 isotherms), J. Liu (SEM), H. Hoier (XRD), V. Duppel (TEM) and R. Merkle (TGA). We are grateful to C. Wu for discussions and B. Lotsch for reading the manuscript.

Author information

Authors and Affiliations

Authors

Contributions

The scientific conception is due to J.M. C.-C.C. designed and executed the experiments. L.F. assisted in experiments and discussions. C.-C.C. and J.M. analysed the data, are responsible for the theoretical treatment and wrote the manuscript.

Corresponding author

Correspondence to Joachim Maier.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Related audio

Supplementary information

Supplementary Information

This file contains Supplementary Text, Supplementary Figures 1-10 and Supplementary References. This file was replaced on 26 October as the original file was corrupted. (PDF 7225 kb)

PowerPoint slides

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, CC., Fu, L. & Maier, J. Synergistic, ultrafast mass storage and removal in artificial mixed conductors. Nature 536, 159–164 (2016). https://doi.org/10.1038/nature19078

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nature19078

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing