Abstract
In 1909, Millikan showed that the charge of electrically isolated systems is quantized in units of the elementary electron charge e. Today, the persistence of charge quantization in small, weakly connected conductors allows for circuits in which single electrons are manipulated, with applications in, for example, metrology, detectors and thermometry1,2,3,4,5. However, as the connection strength is increased, the discreteness of charge is progressively reduced by quantum fluctuations. Here we report the full quantum control and characterization of charge quantization. By using semiconductor-based tunable elemental conduction channels to connect a micrometre-scale metallic island to a circuit, we explore the complete evolution of charge quantization while scanning the entire range of connection strengths, from a very weak (tunnel) to a perfect (ballistic) contact. We observe, when approaching the ballistic limit, that charge quantization is destroyed by quantum fluctuations, and scales as the square root of the residual probability for an electron to be reflected across the quantum channel; this scaling also applies beyond the different regimes of connection strength currently accessible to theory6,7,8. At increased temperatures, the thermal fluctuations result in an exponential suppression of charge quantization and in a universal square-root scaling, valid for all connection strengths, in agreement with expectations8. Besides being pertinent for the improvement of single-electron circuits and their applications, and for the metal–semiconductor hybrids relevant to topological quantum computing9, knowledge of the quantum laws of electricity will be essential for the quantum engineering of future nanoelectronic devices.
This is a preview of subscription content, access via your institution
Relevant articles
Open Access articles citing this article.
-
Tunneling current and noise of entangled electrons in correlated double quantum dot
Scientific Reports Open Access 29 April 2021
-
Energy of a free Brownian particle coupled to thermal vacuum
Scientific Reports Open Access 18 February 2021
-
Electronic heat flow and thermal shot noise in quantum circuits
Nature Communications Open Access 10 December 2019
Access options
Subscribe to this journal
Receive 51 print issues and online access
$199.00 per year
only $3.90 per issue
Rent or buy this article
Get just this article for as long as you need it
$39.95
Prices may be subject to local taxes which are calculated during checkout




References
Schön, G. & Zaikin, A. D. Quantum coherent effects, phase transitions, and the dissipative dynamics of ultra small tunnel junctions. Phys. Rep. 198, 237–412 (1990)
Grabert, H. & Devoret, M. H. (eds). Single Charge Tunneling: Coulomb Blockade Phenomena in Nanostructures (Plenum, 1992)
Likharev, K. K. Single-electron devices and their applications. Proc. IEEE 87, 606–632 (1999)
Meschke, M., Engert, J., Heyer, D. & Pekola, J. P. Comparison of Coulomb blockade thermometers with the International Temperature Scale PLTS-2000. Int. J. Thermophys. 32, 1378–1386 (2011)
Pekola, J. P. et al. Single-electron current sources: toward a refined definition of the ampere. Rev. Mod. Phys. 85, 1421–1472 (2013)
Flensberg, K. Capacitance and conductance of mesoscopic systems connected by quantum point contacts. Phys. Rev. B 48, 11156–11166 (1993)
Matveev, K. A. Coulomb blockade at almost perfect transmission. Phys. Rev. B 51, 1743–1751 (1995)
Nazarov, Y. V. Coulomb blockade without tunnel junctions. Phys. Rev. Lett. 82, 1245–1248 (1999)
Albrecht, S. M. et al. Exponential protection of zero modes in Majorana islands. Nature 531, 206–209 (2016)
Kouwenhoven, L. et al. Single electron charging effects in semiconductor quantum dots. Z. Phys. B 85, 367–373 (1991)
Staring, A. A. M., Williamson, J. G., van Houten, H. & Beenakker, C. W. J. Coulomb-blockade oscillations in a quantum dot. Physica B 175, 226–230 (1991)
van der Vaart, N. et al. Charging effects in quantum dots at high magnetic fields. Physica B 189, 99–110 (1993)
Molenkamp, L. W., Flensberg, K. & Kemerink, M. Scaling of the Coulomb energy due to quantum fluctuations in the charge on a quantum dot. Phys. Rev. Lett. 75, 4282–4285 (1995)
Joyez, P., Bouchiat, V., Esteve, D., Urbina, C. & Devoret, M. H. Strong tunneling in the single-electron transistor. Phys. Rev. Lett. 79, 1349–1352 (1997)
Chouvaev, D., Kuzmin, L. S., Golubev, D. S. & Zaikin, A. D. Strong tunneling and Coulomb blockade in a single-electron transistor. Phys. Rev. B 59, 10599–10602 (1999)
Berman, D., Zhitenev, N. B., Ashoori, R. C. & Shayegan, M. Observation of quantum fluctuations of charge on a quantum dot. Phys. Rev. Lett. 82, 161–164 (1999)
Duncan, D. S., Livermore, C., Westervelt, R. M., Maranowski, K. D. & Gossard, A. C. Direct measurement of the destruction of charge quantization in a single-electron box. Appl. Phys. Lett. 74, 1045–1047 (1999)
Amasha, S. et al. Coulomb blockade in an open quantum dot. Phys. Rev. Lett. 107, 216804 (2011)
Pasquier, C. et al. Quantum limitation on Coulomb blockade observed in a 2D electron system. Phys. Rev. Lett. 70, 69–72 (1993)
Crouch, C. H., Livermore, C., Westervelt, R. M., Campman, K. L. & Gossard, A. C. Coulomb oscillations in partially open quantum dots. Superlattices Microstruct. 20, 377–381 (1996)
Liang, C.-T. et al. Experimental evidence for Coulomb charging effects in an open quantum dot at zero magnetic field. Phys. Rev. Lett. 81, 3507–3510 (1998)
Cronenwett, S. M. et al. Mesoscopic Coulomb blockade in one-channel quantum dots. Phys. Rev. Lett. 81, 5904–5907 (1998)
Tkachenko, O. A. et al. Coulomb charging effects in an open quantum dot device. J. Phys. Condens. Matter 13, 9515–9534 (2001)
Aleiner, I. L. & Glazman, L. I. Mesoscopic charge quantization. Phys. Rev. B 57, 9608–9641 (1998)
Furusaki, A. & Matveev, K. A. Theory of strong inelastic cotunneling. Phys. Rev. B 52, 16676–16695 (1995)
Yi, H. & Kane, C. L. Coulomb blockade in a quantum dot coupled strongly to a lead. Phys. Rev. B 53, 12956–12966 (1996)
Le Hur, K. & Seelig, G. Capacitance of a quantum dot from the channel-anisotropic two-channel Kondo model. Phys. Rev. B 65, 165338 (2002)
Matveev, K. A. & Andreev, A. V. Thermopower of a single-electron transistor in the regime of strong inelastic cotunneling. Phys. Rev. B 66, 045301 (2002)
Korshunov, S. E. Coherent and incoherent tunneling in a Josephson junction with a “periodic” dissipation. JETP Lett. 45, 434–436 (1987)
Mitchell, A. K., Landau, L. A., Fritz, L. & Sela, E. Universality and scaling in a charge two-channel Kondo device. Phys. Rev. Lett. 116, 157202 (2016)
Göktas, O., Weber, J., Weis, J. & von Klitzing, K. Alloyed ohmic contacts to two-dimensional electron system in AlGaAs/GaAs heterostructures down to submicron length scale. Physica E 40, 1579–1581 (2008)
Iftikhar, Z. et al. Two-channel Kondo effect and renormalization flow with macroscopic quantum charge states. Nature 526, 233–236 (2015)
Jezouin, S. et al. Quantum limit of heat flow across a single electronic channel. Science 342, 601–604 (2013)
Spietz, L., Lehnert, K. W., Siddiqi, I. & Schoelkopf, R. J. Primary electronic thermometry using the shot noise of a tunnel junction. Science 300, 1929–1932 (2003)
Panyukov, S. V. & Zaikin, A. D. Coulomb blockade and nonperturbative ground-state properties of ultrasmall tunnel junctions. Phys. Rev. Lett. 67, 3168–3171 (1991)
Wang, X. & Grabert, H. Coulomb charging at large conduction. Phys. Rev. B 53, 12621–12624 (1996)
Lukyanov, S. L. Notes on parafermionic QFTs with boundary interaction. Nucl. Phys. B 784, 151–201 (2007)
Glazman, L. I. & Shekhter, R. I. Coulomb oscillations of the conductance in a laterally confined heterostructure. J. Phys. Condens. Matter 1, 5811–5815 (1989)
Halperin, B. I. Quantized Hall conductance, current-carrying edge states, and the existence of extended states in a two-dimensional disordered potential. Phys. Rev. B 25, 2185–2190 (1982)
Wen, X. G. Chiral Luttinger liquid and the edge excitations in the fractional quantum Hall states. Phys. Rev. B 41, 12838–12844 (1990)
Fröhlich, J. & Zee, A. Large scale physics of the quantum Hall fluid. Nucl. Phys. B 364, 517–540 (1991)
Slobodeniuk, A., Levkivskyi, I. & Sukhorukov, E. Equilibration of quantum Hall edge states by an Ohmic contact. Phys. Rev. B 88, 165307 (2013)
Sukhorukov, E. Scattering theory approach to bosonization of non-equilibrium mesoscopic systems. Physica E 77, 191–198 (2016)
Acknowledgements
This work was supported by the European Research Council (ERC-2010-StG-20091028, no. 259033), the French RENATECH network, the national French programme ‘Investissements d’Avenir’ (Labex NanoSaclay, ANR-10-LABX-0035), the US Department of Energy (DE-FG02-08ER46482) and the Swiss National Science Foundation.
Author information
Authors and Affiliations
Contributions
S.J. and Z.I. performed the experiment with inputs from A.A. and F.P.; S.J., Z.I., A.A. and F.P. analysed the data; F.D.P. fabricated the sample and contributed to a preliminary experiment; U.G., A.C. and A.O. grew the 2DEG; I.P.L., E.I., E.V.S. and L.I.G. developed the strong thermal fluctuations theory; F.P. led the project and wrote the manuscript with inputs from all authors.
Corresponding author
Ethics declarations
Competing interests
The authors declare no competing financial interests.
Additional information
Reviewer Information Nature thanks Y. Nazarov and the other anonymous reviewer(s) for their contribution to the peer review of this work.
Extended data figures and tables
Extended Data Figure 1 Measurement schematic.
The signal VLR (VRR) is the voltage measured with amplification chain L (R) in response to the injected voltage VR. The trenches etched in the 2DEG, which can be seen in the form of a ‘Y’ through the metallic island, ensure that the only way from one QPC to the other is across the metallic island. The experiment is performed in the quantum Hall regime at filling factor ν = 2, where the current propagates along the edges in the direction indicated by arrows.
Extended Data Figure 2 Crosstalk compensation.
a, (Intrinsic) conductance across the characterization gate adjacent to QPCR versus gate voltage
. In the experiment, the left and right switches are independently set to the open and closed positions with
and
, respectively (vertical arrows in c). b, QPCR differential conductance in the presence of a d.c. bias of 72 μV (‘72 μVdc’) versus QPC gate voltage
. The red and blue lines are measured with the adjacent switch in the open and closed positions, respectively (see inset schematics). The voltage drop across QPCR is smaller with the switch open, owing to the added series resistance. Although this does not result in a large error, because
depends weakly on voltage bias, this effect is minimized by extracting the crosstalk compensation
at low
. c, Symbols represent the crosstalk compensation
, with respect to the gate voltage
, versus
. Lines are linear fits of the crosstalk compensation at
(red, −2.8% relative compensation),
(green, −1.1% relative compensation) and
(blue, −1.4% relative compensation).
Extended Data Figure 3 Conductance measurements versus quantitative predictions.
Direct GSET(δVg) comparison at T ≈ 17 mK between data (symbols) and predictions (solid lines, grey areas correspond to the temperature uncertainty of ±4 mK) in the two limits addressed by theory (equation (3) for τL ≈ 0 (top panels), equation (6) for τL ≈ 1 (bottom panels)).
Extended Data Figure 4 Theoretical description of the experimental set-up in formalism (A) for strong thermal fluctuations.
We consider the regime of the quantum Hall effect, where only one spinless edge mode contributes to the transport. The corresponding edge states are described by four charge density operators, labelled by s ∈ {L, R} and α ∈ {1, 2}. These states are mixed (backscattered) at the two QPCs (red dashed lines) with amplitudes γL and γR (equations (14) and (15)). The edge densities enter into the interaction Hamiltonian (equation (12) through the total chargeI8 of the metallic island (equation (13)). The average current 〈I〉 is calculated through a cross-section immediately to the right of QPCR (vertical blue lines).
Extended Data Figure 5 Charge quantization based on conductance versus transmission probability values.
a, b, Schematics of the configurations, both with the same QPCL setting τL = 0.24. In the configuration shown in a, QPCR is set to an ‘intrinsic’ conductance , which decomposes into one ballistic channel and one channel of intrinsic transmission probability 0.5. In the configuration shown in b, QPCR is set to the same intrinsic conductance
, which now decomposes into two non-ballistic channels of intrinsic transmission probabilities 0.7 and 0.8. c, Sweeps of the device conductance are plotted versus gate voltage for the two configurations (a, red triangles; b, black squares). Conductance oscillations are visible only in the configuration shown in b, in the absence of a ballistic channel connected to the island.
Rights and permissions
About this article
Cite this article
Jezouin, S., Iftikhar, Z., Anthore, A. et al. Controlling charge quantization with quantum fluctuations. Nature 536, 58–62 (2016). https://doi.org/10.1038/nature19072
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1038/nature19072
This article is cited by
-
Energy of a free Brownian particle coupled to thermal vacuum
Scientific Reports (2021)
-
Tunneling current and noise of entangled electrons in correlated double quantum dot
Scientific Reports (2021)
-
Electronic heat flow and thermal shot noise in quantum circuits
Nature Communications (2019)
-
Electronic noise due to temperature differences in atomic-scale junctions
Nature (2018)
-
Coulomb Blockade and Multiple Andreev Reflection in a Superconducting Single-Electron Transistor
Journal of Low Temperature Physics (2018)
Comments
By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.