Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

The awakening of a classical nova from hibernation

Abstract

Cataclysmic variable stars—novae, dwarf novae, and nova-likes—are close binary systems consisting of a white dwarf star (the primary) that is accreting matter from a low-mass companion star (the secondary)1. From time to time such systems undergo large-amplitude brightenings. The most spectacular eruptions, with a ten-thousandfold increase in brightness, occur in classical novae and are caused by a thermonuclear runaway on the surface of the white dwarf2. Such eruptions are thought to recur on timescales of ten thousand to a million years3. In between, the system’s properties depend primarily on the mass-transfer rate: if it is lower than a billionth of a solar mass per year, the accretion becomes unstable and the matter is dumped onto the white dwarf during quasi-periodic dwarf nova outbursts4. The hibernation hypothesis5 predicts that nova eruptions strongly affect the mass-transfer rate in the binary, keeping it high for centuries after the event6. Subsequently, the mass-transfer rate should significantly decrease for a thousand to a million years, starting the hibernation phase. After that the nova awakes again—with accretion returning to the pre-eruption level and leading to a new nova explosion. The hibernation model predicts cyclical evolution of cataclysmic variables through phases of high and low mass-transfer. The theory gained some support from the discovery of ancient nova shells around the dwarf novae Z Camelopardalis7 and AT Cancri8, but direct evidence for considerable mass-transfer changes prior, during and after nova eruptions has not hitherto been found. Here we report long-term observations of the classical nova V1213 Cen (Nova Centauri 2009) covering its pre- and post-eruption phases and precisely documenting its evolution. Within the six years before the explosion, the system revealed dwarf nova outbursts indicative of a low mass-transfer rate. The post-nova is two orders of magnitude brighter than the pre-nova at minimum light with no trace of dwarf nova behaviour, implying that the mass-transfer rate increased considerably as a result of the nova explosion.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Long-term light curve of V1213 Cen (Nova Cen 2009).
Figure 2: Snapshots of a nova lifecycle.

Similar content being viewed by others

References

  1. Warner, B. Cataclysmic Variable Stars (Cambridge Univ. Press, 1995)

  2. Paczyński, B. Cataclysmic variables among binary stars. II. Physical parameters for novae. Acta Astron. 15, 197–210 (1965)

    ADS  Google Scholar 

  3. Ford, H. C. The number of outbursts of a classical nova. Astrophys. J. 219, 595–596 (1978)

    Article  CAS  ADS  Google Scholar 

  4. Osaki, Y. An accretion model for the outbursts of U Geminorum stars. Publ. Astron. Soc. Jpn. 26, 429–436 (1974)

    ADS  Google Scholar 

  5. Shara, M. M., Livio, M., Moffat, A. F. J. & Orio, M. Do novae hibernate during most of the millennia between eruptions? Links between dwarf and classical novae, and implications for the space densities and evolution of cataclysmic binaries. Astrophys. J. 311, 163–171 (1986)

    Article  CAS  ADS  Google Scholar 

  6. Kovetz, A., Prialnik, D. & Shara, M. M. What does an erupting nova do to its red dwarf companion? Astrophys. J. 325, 828–836 (1988)

    Article  ADS  Google Scholar 

  7. Shara, M. M. et al. An ancient nova shell around the dwarf nova Z Camelopardalis. Nature 446, 159–162 (2007)

    Article  CAS  ADS  Google Scholar 

  8. Shara, M. M. et al. AT Cnc: a second dwarf nova with a classical nova shell. Astrophys. J. 758, 121 (2012)

    Article  ADS  Google Scholar 

  9. Pojmański, G., Szczygieł, D. & Pilecki, B. V1213 Centauri. IAU Circ. 9043, 1 (2009)

    ADS  Google Scholar 

  10. Pojmański, G. The All Sky Automated Survey. Acta Astron. 47, 467–481 (1997)

    ADS  Google Scholar 

  11. Shafter, A. W. et al. A spectroscopic and photometric survey of novae in M31. Astrophys. J. 734, 12 (2011)

    Article  ADS  Google Scholar 

  12. Shafter, A. W. Photometric and spectroscopic properties of novae in the Large Magellanic Cloud. Astron. J. 145, 117 (2013)

    Article  ADS  Google Scholar 

  13. Pigulski, A. V1213 Centauri. IAU Circ. 9043, 2 (2009)

    ADS  Google Scholar 

  14. Walter, F. M., Battisti, A., Towers, S. E., Bond, H. E. & Stringfellow, G. S. The Stony Brook/SMARTS Atlas of (mostly) Southern Novae. Publ. Astron. Soc. Pacif. 124, 1057–1072 (2012)

    Article  ADS  Google Scholar 

  15. Schwarz, G. J. et al. Swift super soft X-ray detection in Nova V1213 Centauri. Astron. Telegr. 2904 (2010)

  16. Schwarz, G. J. et al. Swift X-ray observations of classical novae. II. The super soft source sample. Astrophys. J. Suppl. Ser. 197, 31 (2011)

    Article  ADS  Google Scholar 

  17. Udalski, A., Szymański, M. K. & Szymański, G. OGLE-IV: fourth phase of the Optical Gravitational Lensing Experiment. Acta Astron. 65, 1–38 (2015)

    ADS  Google Scholar 

  18. Mróz, P. et al. OGLE atlas of classical novae. I. Galactic bulge objects. Astrophys. J. Suppl. Ser. 219, 26 (2015)

    Article  ADS  Google Scholar 

  19. Robinson, E. L. Preeruption light curves of novae. Astron. J. 80, 515–524 (1975)

    Article  ADS  Google Scholar 

  20. Collazzi, A. C. et al. The behavior of novae light curves before eruption. Astron. J. 138, 1846–1873 (2009)

    Article  CAS  ADS  Google Scholar 

  21. Mróz, P. et al. One thousand new dwarf novae from the OGLE survey. Acta Astron. 65, 313–328 (2015)

    ADS  Google Scholar 

  22. Smak, J. On the M V relation for accretion disks in cataclysmic binaries. Acta Astron. 39, 317–321 (1989)

    ADS  Google Scholar 

  23. Schreiber, M. R., Zorotovic, M. & Wijnen, T. P. G. Three in one go: consequential angular momentum loss can solve major problems of CV evolution. Mon. Not. R. Astron. Soc. 455, L16–L20 (2016)

    Article  ADS  Google Scholar 

  24. Nelemans, G., Siess, L., Repetto, S., Toonen, S. & Phynney, E. S. The formation of cataclysmic variables: the influence of nova eruptions. Astrophys. J. 817, 69 (2016)

    Article  ADS  Google Scholar 

  25. Prialnik, D. & Kovetz, A. An extended grid of multicycle nova evolution models. Astrophys. J. 445, 789–810 (1995)

    Article  CAS  ADS  Google Scholar 

  26. Thorstensen, J. R. & Taylor, C. J. Spectroscopy and orbital periods of the old novae V533 Herculis, V446 Herculis and X Serpentis. Mon. Not. R. Astron. Soc. 312, 629–637 (2000)

    Article  CAS  ADS  Google Scholar 

  27. Honeycutt, R. K., Robertson, J. W. & Turner, G. W. Periodic outbursts in the old nova V446 Herculis. Astrophys. J. 446, 838 (1995)

    Article  CAS  ADS  Google Scholar 

  28. Sekiguchi, K. Identification of V1017 Sgr as a cataclysmic variable binary system with unusually long period. Nature 358, 563–565 (1992)

    Article  ADS  Google Scholar 

  29. Patterson, J. et al. BK Lyncis: the oldest old nova and a bellwether for cataclysmic variable evolution. Mon. Not. R. Astron. Soc. 434, 1902–1919 (2013)

    Article  ADS  Google Scholar 

  30. Shara, M. M. in ASP Conf. Ser. Vol. 490 Stella Novae: Past and Future Decades (eds Woudt, P. A. & Ribeiro, V. A. R. M. ) 3–28 (Astronomical Society of the Pacific, 1998)

    Google Scholar 

  31. Kafka, S. Observations from the AVSO International Database. http://www.aavso.org (2016)

  32. van den Bergh, S. & Younger, P. F. UBV photometry of novae. Astron. Astrophys. Suppl. Ser. 70, 125–140 (1987)

    CAS  ADS  Google Scholar 

  33. Güver, T. & Özel, F. The relation between optical extinction and hydrogen column density in the Galaxy. Mon. Not. R. Astron. Soc. 400, 2050–2053 (2009)

    Article  ADS  Google Scholar 

  34. Udalski, A., Szymański, M. K., Soszyński, I. & Poleski, R. The Optical Gravitational Lensing Experiment. Final reductions of the OGLE-III data. Acta Astron. 58, 69–87 (2008)

    ADS  Google Scholar 

  35. Szymański, M. K. et al. The Optical Gravitational Lensing Experiment. OGLE-III photometric maps of the galactic disk fields. Acta Astron. 60, 295–304 (2010)

    ADS  Google Scholar 

  36. Woźniak, P. Difference image analysis of the OGLE-II bulge data. I. The method. Acta Astron. 50, 421–450 (2000)

    ADS  Google Scholar 

  37. Udalski, A. et al. The Optical Gravitational Lensing Experiment. Planetary and low-luminosity object transits in the fields of galactic disk. Results of the 2003 OGLE observing campaigns. Acta Astron. 54, 313–345 (2004)

    ADS  Google Scholar 

  38. Stetson, P. B. DAOPHOT—a computer program for crowded-field stellar photometry. Publ. Astron. Soc. Pacif. 99, 191–222 (1987)

    Article  ADS  Google Scholar 

  39. Otulakowska-Hypka, M., Olech, A. & Patterson, J. Statistical analysis of properties of dwarf nova outbursts. Mon. Not. R. Astron. Soc. 460, 2526–2541 (2016)

    Article  ADS  Google Scholar 

  40. Patterson, J. Distances and absolute magnitudes of dwarf novae: murmurs of period bounce. Mon. Not. R. Astron. Soc. 441, 2965–2716 (2011)

    Google Scholar 

  41. Ritter, H. & Kolb, U. Catalogue of cataclysmic binaries, low-mass X-ray binaries and related objects. Astron. Astrophys. 404, 301–303 (2003)

    Article  ADS  Google Scholar 

  42. Warner, B. Absolute magnitudes of cataclysmic variables. Mon. Not. R. Astron. Soc. 227, 23–73 (1987)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

We thank M. Kubiak and G. Pietrzyński, former members of the OGLE team, for their contribution to the collection of the OGLE photometric data over the past years. P.M. is supported by the ‘Diamond Grant’ (number DI2013/014743) funded by the Polish Ministry of Science and Higher Education. The OGLE project has received funding from the National Science Center, Poland (grant number MAESTRO 2014/14/A/ST9/00121 to A.U.). We acknowledge the variable star observations from the AAVSO International Database contributed by observers worldwide and used in this research.

Author information

Authors and Affiliations

Authors

Contributions

P.M. analysed and interpreted the data, and prepared the manuscript. A.U. reduced and analysed the OGLE photometry. P.P. analysed the Very Large Telescope data. All authors collected the OGLE photometric observations and commented on the present results and on the manuscript.

Corresponding author

Correspondence to Przemek Mróz.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Additional information

The time-series photometry of V1213 Cen is available to the astronomical community from the OGLE Internet Archive (ftp://ftp.astrouw.edu.pl/ogle/ogle4/V1213Cen).

Reviewer Information

Nature thanks M. Shara and the other anonymous reviewer(s) for their contribution to the peer review of this work.

Extended data figures and tables

Extended Data Figure 1 Photometric features of dwarf novae.

a, V-band amplitude versus inter-outburst time Tn. b, Outburst duration Dn versus V-band amplitude. c, Outburst duration Dn versus orbital period Porb. The black asterisk shows the V1213 Cen progenitor (with 1σ error bars). Blue dots, SU UMa-type dwarf novae; red triangles, U Gem-type dwarf novae; orange squares, Z Cam-type dwarf novae.

Extended Data Figure 2 Absolute magnitudes versus orbital periods for dwarf novae and post-novae.

The black asterisk shows the quiescent absolute magnitude of the V1213 Cen progenitor (with 1σ error bars). The black hexagon indicates the current (in 2016) brightness of the post-nova.

PowerPoint slides

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mróz, P., Udalski, A., Pietrukowicz, P. et al. The awakening of a classical nova from hibernation. Nature 537, 649–651 (2016). https://doi.org/10.1038/nature19066

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nature19066

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing