Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Solar-type dynamo behaviour in fully convective stars without a tachocline


In solar-type stars (with radiative cores and convective envelopes like our Sun), the magnetic field powers star spots, flares and other solar phenomena, as well as chromospheric and coronal emission at ultraviolet to X-ray wavelengths. The dynamo responsible for generating the field depends on the shearing of internal magnetic fields by differential rotation1,2. The shearing has long been thought to take place in a boundary layer known as the tachocline between the radiative core and the convective envelope3. Fully convective stars do not have a tachocline and their dynamo mechanism is expected to be very different4, although its exact form and physical dependencies are not known. Here we report observations of four fully convective stars whose X-ray emission correlates with their rotation periods in the same way as in solar-type stars. As the X-ray activity–rotation relationship is a well-established proxy for the behaviour of the magnetic dynamo, these results imply that fully convective stars also operate a solar-type dynamo. The lack of a tachocline in fully convective stars therefore suggests that this is not a critical ingredient in the solar dynamo and supports models in which the dynamo originates throughout the convection zone.

This is a preview of subscription content, access via your institution

Relevant articles

Open Access articles citing this article.

Access options

Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Figure 1: Rotation–activity relationship diagram for partly and fully convective stars.


  1. Parker, E. N. Hydrodynamic dynamo models. Astrophys. J. 122, 293–314 (1955)

    Article  ADS  MathSciNet  Google Scholar 

  2. Babcock, H. W. The Sun’s magnetic field. Annu. Rev. Astron. Astrophys. 1, 41–58 (1963)

    Article  ADS  Google Scholar 

  3. Speigel, E. A. & Zahn, J.-P. The solar tachocline. Astron. Astrophys. 265, 106–114 (1992)

    ADS  Google Scholar 

  4. Durney, B. R., De Young, D. S. & Roxburgh, I. W. On the generation of the large-scale and turbulent magnetic fields in solar-type stars. Sol. Phys. 145, 207–225 (1993)

    Article  ADS  Google Scholar 

  5. Vaiana, G. S. et al. Results from an extensive Einstein stellar survey. Astrophys. J. 244, 163–182 (1981)

    Article  ADS  Google Scholar 

  6. Pevtsov, A. A. et al. The relationship between X-ray radiance and magnetic flux. Astrophys. J. 598, 1387–1391 (2003)

    CAS  Article  ADS  Google Scholar 

  7. Spruit, H. C. Theories of the Solar Cycle: a Critical View 39–54 (Springer, 2011)

  8. Pallavicini, R. et al. Relations among stellar X-ray emission observed from Einstein, stellar rotation and bolometric luminosity. Astrophys. J. 248, 279–290 (1981)

    Article  ADS  Google Scholar 

  9. Wright, N. J., Drake, J. J., Mamajek, E. E. & Henry, G. W. The stellar-activity-rotation relationship and the evolution of stellar dynamos. Astrophys. J. 743, 48 (2011)

    Article  ADS  Google Scholar 

  10. Noyes, R. W., Hartmann, L. W., Baliunas, S. L., Duncan, D. K. & Vaughan, A. H. Rotation, convection, and magnetic activity in lower main-sequence stars. Astrophys. J. 279, 763–777 (1984)

    CAS  Article  ADS  Google Scholar 

  11. Charbonneau, P. Solar dynamo theory. Annu. Rev. Astron. Astrophys. 52, 251–290 (2014)

    Article  ADS  Google Scholar 

  12. Brandenburg, A. Location of the solar dynamo and near-surface shear. In ASP Conf. Series Vol. 354 (eds Leibacher, J., Stein, R. F. & Uitenbroek, H. ) 121–126 (Astronomical Society of the Pacific, 2006)

    ADS  Google Scholar 

  13. Guerrero, G. & de Gouveia Dal Pino, E. M. How does the shape and thickness of the tachocline affect the distribution of the toroidal magnetic fields in the solar dynamo? Astron. Astrophys. 464, 341–349 (2007)

    Article  ADS  Google Scholar 

  14. Parker, E. N. The generation of magnetic fields in astrophysical bodies. X. Magnetic buoyancy and the solar dynamo. Astrophys. J. 198, 205–209 (1975)

    Article  ADS  Google Scholar 

  15. Brown, B. P., Browning, M. K., Brun, A. S., Miesch, M. S. & Toomre, J. Persistent magnetic wreaths in a rapidly rotating Sun. Astrophys. J. 711, 424–438 (2010)

    Article  ADS  Google Scholar 

  16. Dobler, W., Stix, M. & Brandenburg, A. Magnetic field generation in fully convective rotating spheres. Astrophys. J. 638, 336–347 (2006)

    Article  ADS  Google Scholar 

  17. Browning, M. K. Simulations of dynamo action in fully convective stars. Astrophys. J. 676, 1262–1280 (2008)

    CAS  Article  ADS  Google Scholar 

  18. Vilhu, O. The nature of magnetic activity in lower main sequence stars. Astron. Astrophys. 133, 117–126 (1984)

    ADS  Google Scholar 

  19. Johns-Krull, C. M. & Valenti, J. A. Detection of strong magnetic fields on M dwarfs. Astrophys. J. 459, 95–99 (1996)

    Article  ADS  Google Scholar 

  20. Irwin, J. et al. On the angular momentum evolution of fully convective stars: rotation periods for field M-dwarfs from the MEarth transit survey. Astrophys. J. 727, 56 (2011)

    Article  ADS  Google Scholar 

  21. Spruit, H. C. & Ritter, H. Stellar activity and the period gap in cataclysmic variables. Astron. Astrophys. 124, 267–272 (1983)

    CAS  ADS  Google Scholar 

  22. Garraffo, C., Drake, J. J. & Cohen, O. Magnetic complexity as an explanation for bimodal rotation populations among young stars. Astrophys. J. 807, L6 (2015)

    Article  ADS  Google Scholar 

  23. Nelson, N. J., Brown, B. P., Brun, A. S., Miesch, M. S. & Toomre, J. Magnetic wreaths and cycles in convective dynamos. Astrophys. J. 762, 73 (2013)

    Article  ADS  Google Scholar 

  24. Fan, Y. & Fang, F. A simulation of convective dynamo in the solar convective envelope: maintenance of the solar-like differential rotation and emerging flux. Astrophys. J. 789, 35 (2014)

    Article  ADS  Google Scholar 

  25. Dikpati, M. & Gilman, P. A. Simulating and predicting solar cycles using a flux-transport dynamo. Astrophys. J. 649, 498–514 (2006)

    Article  ADS  Google Scholar 

  26. Muñoz-Jaramillo, A., Nandy, D. & Martens, P. C. H. Helioseismic data inclusion in solar dynamo models. Astrophys. J. 698, 461–478 (2009)

    Article  ADS  Google Scholar 

  27. Cox, A. N., Hodson, S. W. & Shaviv, G. On the ratio of mixing length to scale height in red dwarfs. Astrophys. J. 245, L37–L40 (1981)

    CAS  Article  ADS  Google Scholar 

  28. Moss, D. L. & Taylor, R. J. The influence of a poloidal magnetic field on convection in stellar cores. Mon. Not. R. Astron. Soc. 147, 133–138 (1970)

    Article  ADS  Google Scholar 

  29. Mullan, D. J. & MacDonald, J. Are magnetically active low-mass M dwarfs completely convective? Astrophys. J. 559, 353–371 (2001)

    Article  ADS  Google Scholar 

  30. Browning, M. K., Weber, M. A., Chabrier, G. & Massey, A. P. Theoretical limits on magnetic field strengths in low-mass stars. Astrophys. J. 818, 189 (2016)

    Article  ADS  Google Scholar 

  31. Reid, I. N. et al. Meeting the cool neighbors. VIII. A preliminary 20 parsec census from the NLTT catalogue. Astron. J. 128, 463–483 (2004)

    Article  ADS  Google Scholar 

  32. Newton, E. R. et al. Near-infrared metallicities, radial velocities, and spectral types for 447 nearby M dwarfs. Astron. J. 147, 20 (2014)

    Article  ADS  CAS  Google Scholar 

  33. West, A. A. et al. An activity-rotation relationship and kinematic analysis of nearby mid-to-late-type M dwarfs. Astrophys. J. 812, 3 (2015)

    Article  ADS  CAS  Google Scholar 

  34. Garmire, G. P., Bautz, M. W., Ford, P. G., Nousek, J. A. & Ricker, G. R. Jr. Advanced CCD Imaging Spectrometer (ACIS) instrument on the Chandra X-ray Observatory. Proc. SPIE 4851, 28–44 (2003)

    Article  ADS  Google Scholar 

  35. Weisskopf, M. C., Tananbaum, H. D., Van Speybroeck, L. P. & O’Dell, S. L. Chandra X-ray Observatory (CXO): overview. Proc. SPIE 4012, 2–16 (2000)

    Article  ADS  Google Scholar 

  36. Fruscione, A. et al. CIAO: Chandra’s data analysis system. Proc. SPIE 6270, 62701V (2006)

    Article  Google Scholar 

  37. Arnauld, K. A. XSPEC: the first ten years. ASP Conf. Series 101, 17–20 (Astronomical Society of the Pacific, 1996)

    ADS  Google Scholar 

  38. Smith, R. K., Brickhouse, N. S., Liedahl, D. A. & Raymond, J. C. Collisional plasma models with APEC/APED: emission-line diagnostics of hydrogen-like and helium-like ions. Astrophys. J. 556, L91–L95 (2001)

    CAS  Article  ADS  Google Scholar 

  39. Cash, W. Parameter estimation in astronomy through application of the likelihood ratio. Astrophys. J. 228, 939–947 (1979)

    Article  ADS  Google Scholar 

  40. Cruz, K. L. & Reid, I. N. Meeting the cool neighbors. III. Spectroscopy of northern NLTT stars. Astron. J. 123, 2828–2840 (2002)

    CAS  Article  ADS  Google Scholar 

  41. Kirkpatrick, J. D., Henry, T. J. & McCarthy, D. W. Jr. A standard stellar spectral sequence in the red/near-infrared – classes K5 to M9. Astrophys. J. Suppl. Ser. 77, 417–440 (1991)

    CAS  Article  ADS  Google Scholar 

  42. Bessell, M. S. The late-M dwarfs. Astron. J. 101, 662–676 (1991)

    CAS  Article  ADS  Google Scholar 

  43. Benedict, G. F. et al. Photometry of Proxima Centauri and Barnard’s Star using Hubble Space Telescope Fine Guidance Sensor 3: a search for periodic variations. Astron. J. 116, 429–439 (1998)

    Article  ADS  Google Scholar 

  44. Schmitt, J. H. M. M. & Liefke, C. NEXXUS: a comprehensive ROSAT survey of coronal X-ray emission among nearby solar-like stars. Astron. Astrophys. 417, 651–665 (2004)

    CAS  Article  ADS  Google Scholar 

  45. Kiraga, M. & Stepien, K. Age-rotation-activity relations for M dwarf stars based on ASAS photometric data. Acta Astron. 57, 149–168 (2007)

    ADS  Google Scholar 

  46. Jeffries, R. D., Jackson, R. J., Briggs, K. R., Evans, P. A. & Pye, J. P. Investigating coronal saturation and supersaturation in fast-rotating M-dwarf stars. Mon. Not. R. Astron. Soc. 411, 2099–2112 (2011)

    Article  ADS  Google Scholar 

Download references


N.J.W. acknowledges a Royal Astronomical Society Research Fellowship and an STFC Ernest Rutherford Fellowship. J.J.D. was supported by NASA contract NAS8-03060 to the Chandra X-ray Center. We thank J. Irwin, R. Jeffries and A. West for assistance and comments on an early draft of this paper. This research has made use of the Vizier ( and SIMBAD ( databases (operated at CDS, Strasbourg, France).

Author information

Authors and Affiliations



N.J.W. reduced the Chandra observations, measured the X-ray fluxes and made the necessary calculations to plot the stars in Fig. 1. N.J.W. and J.J.D. wrote the interpretation and discussion of the results.

Corresponding author

Correspondence to Nicholas J. Wright.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Additional information

Reviewer Information Nature thanks D. Moss and the other anonymous reviewer(s) for their contribution to the peer review of this work.

PowerPoint slides

Source data

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Wright, N., Drake, J. Solar-type dynamo behaviour in fully convective stars without a tachocline. Nature 535, 526–528 (2016).

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI:

Further reading


By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing