Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

A sensitive electrometer based on a Rydberg atom in a Schrödinger-cat state


Fundamental quantum fluctuations caused by the Heisenberg principle limit measurement precision1. If the uncertainty is distributed equally between conjugate variables of the meter system, the measurement precision cannot exceed the standard quantum limit. When the meter is a large angular momentum, going beyond the standard quantum limit requires non-classical states such as squeezed states2,3,4 or Schrödinger-cat-like states5,6,7. However, the metrological use of the latter8,9,10 has been so far restricted to meters with a relatively small total angular momentum because the experimental preparation of these non-classical states is very challenging11,12. Here we report a measurement of an electric field based on an electrometer consisting of a large angular momentum (quantum number J ≈ 25) carried by a single atom in a high-energy Rydberg state. We show that the fundamental Heisenberg limit13 can be approached when the Rydberg atom undergoes a non-classical evolution through Schrödinger-cat states. Using this method, we reach a single-shot sensitivity of 1.2 millivolts per centimetre for a 100-nanosecond interaction time, corresponding to 30 microvolts per centimetre per square root hertz at our 3 kilohertz repetition rate. This highly sensitive, non-invasive space- and time-resolved field measurement extends the realm of electrometric techniques14,15,16,17 and could have important practical applications: detection of individual electrons in mesoscopic devices18,19,20,21 at a distance of about 100 micrometres with a megahertz bandwidth is within reach.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Atomic levels and measurement sequence.
Figure 2: Classical and cat-state-based field measurements.
Figure 3: Microwave Ramsey fringes.
Figure 4: Comparison of the single-shot sensitivity with the SQL and the HL.

Similar content being viewed by others


  1. Giovannetti, V., Lloyd, S. & Maccone, L. Quantum-enhanced measurements: beating the standard quantum limit. Science 306, 1330–1336 (2004).

    Article  ADS  CAS  Google Scholar 

  2. Wasilewski, W. et al. Quantum noise limited and entanglement-assisted magnetometry. Phys. Rev. Lett. 104, 133601 (2010).

    Article  ADS  CAS  Google Scholar 

  3. Müssel, W., Strobel, H., Linnemann, D., Hume, D. B. & Oberthaler, M. K. Scalable spin squeezing for quantum-enhanced magnetometry with Bose-Einstein condensates. Phys. Rev. Lett. 113, 103004 (2014).

    Article  ADS  Google Scholar 

  4. Hosten, O., Engelsen, N. J., Krishnakumar, R. & Kasevich, M. A. Measurement noise 100 times lower than the quantum-projection limit using entangled atoms. Nature 529, 505–508 (2016).

    Article  ADS  CAS  Google Scholar 

  5. Massar, S. & Polzik, E. S. Generating a superposition of spin states in an atomic ensemble. Phys. Rev. Lett. 91, 060401 (2003).

    Article  ADS  CAS  Google Scholar 

  6. Lau, H. W., Dutton, Z., Wang, T. & Simon, C. Proposal for the creation and optical detection of spin cat states in Bose-Einstein condensates. Phys. Rev. Lett. 113, 090401 (2014).

    Article  ADS  Google Scholar 

  7. Tanaka, T. et al. Proposed robust entanglement-based magnetic field sensor beyond the standard quantum limit. Phys. Rev. Lett. 115, 170801 (2015).

    Article  ADS  Google Scholar 

  8. Leibfried, D. et al. Toward Heisenberg-limited spectroscopy with multiparticle entangled states. Science 304, 1476–1478 (2004).

    Article  ADS  CAS  Google Scholar 

  9. Nagata, T., Okamoto, R., O’Brien, J. L., Sasaki, K. & Takeuchi, S. Beating the standard quantum limit with four-entangled photons. Science 316, 726–729 (2007).

    Article  ADS  CAS  Google Scholar 

  10. Jones, J. A. et al. Magnetic field sensing beyond the standard quantum limit using 10-spin NOON states. Science 324, 1166–1168 (2009).

    Article  ADS  CAS  Google Scholar 

  11. Monz, T. et al. 14-Qubit entanglement: creation and coherence. Phys. Rev. Lett. 106, 130506 (2011).

    Article  ADS  Google Scholar 

  12. Signoles, A. et al. Confined quantum Zeno dynamics of a watched atomic arrow. Nat. Phys. 10, 715–719 (2014).

    Article  CAS  Google Scholar 

  13. Giovannetti, V., Lloyd, S. & Maccone, L. Advances in quantum metrology. Nat. Photon. 5, 222–229 (2011).

    Article  ADS  CAS  Google Scholar 

  14. Vamivakas, A. N. et al. Nanoscale optical electrometer. Phys. Rev. Lett. 107, 166802 (2011).

    Article  ADS  CAS  Google Scholar 

  15. Houel, J. et al. Probing single-charge fluctuations at a GaAs/AlAs interface using laser spectroscopy on a nearby InGaAs quantum dot. Phys. Rev. Lett. 108, 107401 (2012).

    Article  ADS  CAS  Google Scholar 

  16. Dolde, F. et al. Nanoscale detection of a single fundamental charge in ambient conditions using the NV center in diamond. Phys. Rev. Lett. 112, 097603 (2014).

    Article  ADS  Google Scholar 

  17. Arnold, C. et al. Cavity-enhanced real-time monitoring of single-charge jumps at the microsecond time scale. Phys. Rev. X 4, 021004 (2014).

    Google Scholar 

  18. Cleland, A. N. & Roukes, M. L. A nanometre-scale mechanical electrometer. Nature 392, 160–162 (1998).

    Article  ADS  Google Scholar 

  19. Bunch, J. S. et al. Electromechanical resonators from graphene sheets. Science 315, 490–493 (2007).

    Article  ADS  CAS  Google Scholar 

  20. Yoo, M. J. et al. Scanning single-electron transistor microscopy: imaging individual charges. Science 276, 579–582 (1997).

    Article  CAS  Google Scholar 

  21. Devoret, M. H. & Schoelkopf, R. J. Amplifying quantum signals with the single-electron transistor. Nature 406, 1039–1046 (2000).

    Article  CAS  Google Scholar 

  22. Lo, H. Y. et al. Spin-motion entanglement and state diagnosis with squeezed oscillator wavepackets. Nature 521, 336–339 (2015).

    Article  ADS  CAS  Google Scholar 

  23. Wollman, E. E. et al. Quantum squeezing of motion in a mechanical resonator. Science 349, 952–955 (2015).

    Article  ADS  MathSciNet  CAS  Google Scholar 

  24. Caves, C. M., Thorne, K. S., Drever, R. W., Sandberg, V. D. & Zimmermann, M. On the measurement of a weak classical force coupled to a quantum-mechanical oscillator. I. Issues of principle. Rev. Mod. Phys. 52, 341–392 (1980).

    Article  ADS  Google Scholar 

  25. Kitagawa, M. & Ueda, M. Squeezed spin states. Phys. Rev. A 47, 5138–5143 (1993).

    Article  ADS  CAS  Google Scholar 

  26. Arecchi, F., Courtens, E., Gilmore, R. & Thomas, H. Atomic coherent spin states in quantum optics. Phys. Rev. A 6, 2211–2237 (1972).

    Article  ADS  CAS  Google Scholar 

  27. Osterwalder, A. & Merkt, F. Using high Rydberg states as electric field sensors. Phys. Rev. Lett. 82, 1831–1834 (1999).

    Article  ADS  CAS  Google Scholar 

  28. Abel, R. P., Carr, C., Krohn, U. & Adams, C. S. Electrometry near a dielectric surface using Rydberg electromagnetically induced transparency. Phys. Rev. A 84, 023408 (2011).

    Article  ADS  Google Scholar 

  29. Hempel, C. et al. Entanglement-enhanced detection of single-photon scattering events. Nat. Photon. 7, 630–633 (2013).

    Article  ADS  CAS  Google Scholar 

  30. Hermann-Avigliano, C. et al. Long coherence times for Rydberg qubits on a superconducting atom chip. Phys. Rev. A 90, 040502(R) (2014).

    Article  ADS  Google Scholar 

  31. Bollinger, J. J., Itano, W. M., Wineland, D. J. & Heinzen, D. J. Optimal frequency measurements with maximally correlated state. Phys. Rev. A 54, R4649–R4652 (1996).

    Article  ADS  CAS  Google Scholar 

  32. Pauli, W. Jr Über das Wasserstoffspektrum vom Standpunkt der neuen Quantenmechanik. Z. Phys. 36, 336–363 (1926).

    Article  ADS  CAS  Google Scholar 

  33. Gay, J. C., Delande, D. & Bommier, A. Atomic quantum states with localization on classical elliptical orbits. Phys. Rev. A 39, 6587–6590 (1989).

    Article  ADS  CAS  Google Scholar 

  34. Bellomo, P., Stroud, C. R., Farrelly, D. & Uzer, T. Quantum-classical correspondence in the hydrogen atom in weak external fields. Phys. Rev. A 58, 3896–3913 (1998).

    Article  ADS  CAS  Google Scholar 

  35. Bellomo, P. & Stroud, C. R. Jr Classical evolution of quantum elliptic states. Phys. Rev. A 59, 2139–2145 (1999).

    Article  ADS  CAS  Google Scholar 

Download references


We thank A. Cottet, T. Kontos and W. Munro for discussions. We acknowledge funding by the EU under the ERC project ‘DECLIC’ and the RIA project ‘RYSQ’.

Reviewer Information Nature thanks C. Adams, L. Maccone and the other anonymous reviewer(s) for their contribution to the peer review of this work.

Author information

Authors and Affiliations



A.F., E.K.D., D.G., S.H., J.M.R., M.B. and S.G. contributed to the experimental set-up. A.F. and E.K.D. collected the data and analysed the results. J.M.R., S.H. and M.B. supervised the research. S.G. led the experiment. All authors discussed the results and the manuscript.

Corresponding author

Correspondence to Sébastien Gleyzes.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Extended data figures and tables

Extended Data Figure 1 Schematic of the experiment.

The atoms are produced by excitation of a thermal rubidium beam (blue arrow) propagating along axis O–x. Two horizontal electrodes A and B (represented here as cut by a vertical plane) produce the directing electric field (F) along O–z. The gap between A and B is surrounded by four independent electrodes (1, 2, 3 and 4), on which we apply radio-frequency signals to produce σ+ fields with tunable phase and amplitude. Electrodes 1 and 4, not represented, are the mirror images of electrodes 2 and 3 (in yellow) with respect to the x–O–z plane. The laser excitation to the Rydberg states is performed using three laser beams that intersect in the centre O of the cavity. The 780 nm and 776 nm laser beams are collinear (red), the 1,259 nm laser is sent perpendicular to the other beams (green). Once the atoms have left the electrode structure, they enter the field-ionization detector D.

PowerPoint slides

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Facon, A., Dietsche, EK., Grosso, D. et al. A sensitive electrometer based on a Rydberg atom in a Schrödinger-cat state. Nature 535, 262–265 (2016).

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI:

This article is cited by


By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing