Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Environmental Breviatea harbour mutualistic Arcobacter epibionts


Breviatea form a lineage of free living, unicellular protists, distantly related to animals and fungi1,2. This lineage emerged almost one billion years ago, when the oceanic oxygen content was low, and extant Breviatea have evolved or retained an anaerobic lifestyle3,4. Here we report the cultivation of Lenisia limosa, gen. et sp. nov., a newly discovered breviate colonized by relatives of animal-associated Arcobacter. Physiological experiments show that the association of L. limosa with Arcobacter is driven by the transfer of hydrogen and is mutualistic, providing benefits to both partners. With whole-genome sequencing and differential proteomics, we show that an experimentally observed fitness gain of L. limosa could be explained by the activity of a so far unknown type of NAD(P)H-accepting hydrogenase, which is expressed in the presence, but not in the absence, of Arcobacter. Differential proteomics further reveal that the presence of Lenisia stimulates expression of known ‘virulence’ factors by Arcobacter. These proteins typically enable colonization of animal cells during infection5, but may in the present case act for mutual benefit. Finally, re-investigation of two currently available transcriptomic data sets of other Breviatea4 reveals the presence and activity of related hydrogen-consuming Arcobacter, indicating that mutualistic interaction between these two groups of microbes might be pervasive. Our results support the notion that molecular mechanisms involved in virulence can also support mutualism6, as shown here for Arcobacter and Breviatea.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Relatives of animal-associated Arcobacter colonize Breviatea.
Figure 2: Symbiotic metabolism of L. limosa and Arcobacter.
Figure 3: The fitness of L. limosa depends on its symbiont.

Similar content being viewed by others


  1. Brown, M. W. et al. Phylogenomics demonstrates that breviate flagellates are related to opisthokonts and apusomonads. Proc. R. Soc. B 280, 20131755 (2013)

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  2. Parfrey, L. W., Lahr, D. J. G., Knoll, A. H. & Katz, L. A. Estimating the timing of early eukaryotic diversification with multigene molecular clocks. Proc. Natl Acad. Sci. USA 108, 13624–13629 (2011)

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  3. Planavsky, N. J. et al. Low mid-Proterozoic atmospheric oxygen levels and the delayed rise of animals. Science 346, 635–638 (2014)

    Article  ADS  CAS  PubMed  Google Scholar 

  4. Stairs, C. W. et al. A SUF Fe-S cluster biogenesis system in the mitochondrion-related organelles of the anaerobic protist Pygsuia. Curr. Biol. 24, 1176–1186 (2014)

    Article  CAS  PubMed  Google Scholar 

  5. Ferreira, S., Queiroz, J. A., Oleastro, M. & Domingues, F. C. Insights in the pathogenesis and resistance of Arcobacter: a review. Crit. Rev. Microbiol. 42, 364–383 (2016)

    CAS  PubMed  Google Scholar 

  6. Sayavedra, L. et al. Abundant toxin-related genes in the genomes of beneficial symbionts from deep-sea hydrothermal vent mussels. eLife 4, e07966 (2015)

    Article  PubMed  PubMed Central  Google Scholar 

  7. McFall-Ngai, M. et al. Animals in a bacterial world, a new imperative for the life sciences. Proc. Natl Acad. Sci. USA 110, 3229–3236 (2013)

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  8. Suga, H. et al. The Capsaspora genome reveals a complex unicellular prehistory of animals. Nature Commun. 4, 2325 (2013)

    Article  ADS  CAS  Google Scholar 

  9. Merchant, S. S. et al. The Chlamydomonas genome reveals the evolution of key animal and plant functions. Science 318, 245–250 (2007)

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  10. Stairs, C. W., Leger, M. M. & Roger, A. J. Diversity and origins of anaerobic metabolism in mitochondria and related organelles. Phil. Trans. R. Soc. B 370, 20140326 (2015)

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  11. Schut, G. J. & Adams, M. W. W. The iron-hydrogenase of Thermotoga maritima utilizes ferredoxin and NADH synergistically: a new perspective on anaerobic hydrogen production. J. Bacteriol. 191, 4451–4457 (2009)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Hrdy, I. et al. Trichomonas hydrogenosomes contain the NADH dehydrogenase module of mitochondrial complex I. Nature 432, 618–622 (2004)

    Article  ADS  CAS  PubMed  Google Scholar 

  13. Stams, A. J. & Plugge, C. M. Electron transfer in syntrophic communities of anaerobic bacteria and archaea. Nature Rev. Microbiol. 7, 568–577 (2009)

    Article  CAS  Google Scholar 

  14. Moser, I., Schroeder, W. & Salnikow, J. Campylobacter jejuni major outer membrane protein and a 59-kDa protein are involved in binding to fibronectin and INT 407 cell membranes. FEMS Microbiol. Lett. 157, 233–238 (1997)

    Article  CAS  PubMed  Google Scholar 

  15. Monteville, M. R., Yoon, J. E. & Konkel, M. E. Maximal adherence and invasion of INT 407 cells by Campylobacter jejuni requires the CadF outer-membrane protein and microfilament reorganization. Microbiology 149, 153–165 (2003)

    Article  CAS  PubMed  Google Scholar 

  16. van Alphen, L. B. et al. Active migration into the subcellular space precedes Campylobacter jejuni invasion of epithelial cells. Cell. Microbiol. 10, 53–66 (2008)

    CAS  PubMed  Google Scholar 

  17. Pernthaler, A., Pernthaler, J. & Amann, R. Fluorescence in situ hybridization and catalyzed reporter deposition for the identification of marine bacteria. Appl. Environ. Microbiol. 68, 3094–3101 (2002)

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  18. Zerbino, D. R. & Birney, E. Velvet: algorithms for de novo short read assembly using de Bruijn graphs. Genome Res. 18, 821–829 (2008)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Strous, M., Kraft, B., Bisdorf, R. & Tegetmeyer, H. E. The binning of metagenomic contigs for microbial physiology of mixed cultures. Front. Microbiol. 3, 410 (2012)

    Article  PubMed  PubMed Central  Google Scholar 

  20. Langmead, B. & Salzberg, S. L. Fast gapped-read alignment with Bowtie 2. Nature Methods 9, 357–359 (2012)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Nadalin, F., Vezzi, F. & Policriti, A. GapFiller: a de novo assembly approach to fill the gap within paired reads. BMC Bioinformatics 13 (Suppl. 14), S8 (2012)

    Article  PubMed  PubMed Central  Google Scholar 

  22. Cantarel, B. L. et al. MAKER: an easy-to-use annotation pipeline designed for emerging model organism genomes. Genome Res. 18, 188–196 (2008)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Ter-Hovhannisyan, V., Lomsadze, A., Chernoff, Y. O. & Borodovsky, M. Gene prediction in novel fungal genomes using an ab initio algorithm with unsupervised training. Genome Res. 18, 1979–1990 (2008)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Korf, I. Gene finding in novel genomes. BMC Bioinformatics 5, 59 (2004)

    Article  PubMed  PubMed Central  Google Scholar 

  25. Chen, N. Using RepeatMasker to identify repetitive elements in genomic sequences. Curr. Protoc. Bioinformatics 25, 4.10.1–4.10.14 (2004)

    Google Scholar 

  26. Kanehisa, M., Goto, S., Sato, Y., Furumichi, M. & Tanabe, M. KEGG for integration and interpretation of large-scale molecular data sets. Nucleic Acids Res. 40, D109–D114 (2012)

    Article  CAS  PubMed  Google Scholar 

  27. Emanuelsson, O., Nielsen, H., Brunak, S. & von Heijne, G. Predicting subcellular localization of proteins based on their N-terminal amino acid sequence. J. Mol. Biol. 300, 1005–1016 (2000)

    Article  CAS  PubMed  Google Scholar 

  28. Claros, M. G. MitoProt, a Macintosh application for studying mitochondrial proteins. Comput. Appl. Biosci. 11, 441–447 (1995)

    CAS  PubMed  Google Scholar 

  29. Finn, R. D., Clements, J. & Eddy, S. R. HMMER web server: interactive sequence similarity searching. Nucleic Acids Res. 39, W29–W37 (2011)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Finn, R. D. et al. The Pfam protein families database. Nucleic Acids Res. 38, D211–D222 (2010)

    Article  CAS  PubMed  Google Scholar 

  31. Letunic, I., Doerks, T. & Bork, P. SMART: recent updates, new developments and status in 2015. Nucleic Acids Res. 43, D257–D260 (2015)

    Article  CAS  PubMed  Google Scholar 

  32. Glass, E. M., Wilkening, J., Wilke, A. & Antonopoulos, D. & Meyer, F. Using the metagenomics RAST server (MG-RAST) for analyzing shotgun metagenomes. Cold Spring Harb. Protoc. 5, (2010)

  33. Parks, D. H., Imelfort, M., Skennerton, C. T., Hugenholtz, P. & Tyson, G. W. CheckM: assessing the quality of microbial genomes recovered from isolates, single cells, and metagenomes. PeerJ 3, 1–4 (2014)

    Google Scholar 

  34. Smith, C. J., Nedwell, D. B., Dong, L. F. & Osborn, A. M. Diversity and abundance of nitrate reductase genes (narG and napA), nitrite reductase genes (nirS and nrfA), and their transcripts in estuarine sediments. Appl. Environ. Microbiol. 73, 3612–3622 (2007)

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  35. Parfrey, L. W. et al. Broadly sampled multigene analyses yield a well-resolved eukaryotic tree of life. Syst. Biol. 59, 518–533 (2010)

    Article  PubMed  PubMed Central  Google Scholar 

  36. Katoh, K. & Standley, D. M. MAFFT multiple sequence alignment software version 7: improvements in performance and usability. Mol. Biol. Evol. 30, 772–780 (2013)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Stamatakis, A. RAxML version 8: a tool for phylogenetic analysis and post-analysis of large phylogenies. Bioinformatics 30, 1312–1313 (2014)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Ronquist, F. et al. MrBayes 3.2: efficient Bayesian phylogenetic inference and model choice across a large model space. Syst. Biol. 61, 539–542 (2012)

    Article  PubMed  PubMed Central  Google Scholar 

  39. Winiewski, J. R., Zougman, A., Nagaraj, N. & Mann, M. Universal sample preparation method for proteome analysis. Nature Methods 6, 359–362 (2009)

    Article  CAS  Google Scholar 

  40. Oberg, A. L. & Vitek, O. Statistical design of quantitative mass spectrometry-based proteomic experiments. J. Proteome Res. 8, 2144–2156 (2009)

    Article  CAS  PubMed  Google Scholar 

  41. Olsen, J. V. et al. Parts per million mass accuracy on an Orbitrap mass spectrometer via lock mass injection into a C-trap. Mol. Cell. Proteomics 4, 2010–2021 (2005)

    Article  CAS  PubMed  Google Scholar 

  42. Spivak, M., Weston, J., Bottou, L., Käll, L. & Noble, W. S. Improvements to the percolator algorithm for peptide identification from shotgun proteomics data sets. J. Proteome Res. 8, 3737–3745 (2009)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Florens, L. et al. Analyzing chromatin remodeling complexes using shotgun proteomics and normalized spectral abundance factors. Methods 40, 303–311 (2006)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Mueller, R. S. et al. Ecological distribution and population physiology defined by proteomics in a natural microbial community. Mol. Syst. Biol. 6, 374 (2010)

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  45. Tusher, V. G., Tibshirani, R. & Chu, G. Significance analysis of microarrays applied to the ionizing radiation response. Proc. Natl Acad. Sci. USA 98, 5116–5121 (2001)

    Article  ADS  CAS  PubMed  PubMed Central  MATH  Google Scholar 

  46. Zhu, Y., Stephens, R. M., Meltzer, P. S. & Davis, S. R. SRAdb: query and use public next-generation sequencing data from within R. BMC Bioinformatics 14, 19 (2013)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Li, H. & Durbin, R. Fast and accurate long-read alignment with Burrows-Wheeler transform. Bioinformatics 26, 589–595 (2010)

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  48. Simpson, J. T. & Durbin, R. Efficient de novo assembly of large genomes using compressed data structures. Genome Res. 22, 549–556 (2012)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Buchfink, B., Xie, C. & Huson, D. H. Fast and sensitive protein alignment using DIAMOND. Nature Methods 12, 59–60 (2015)

    Article  CAS  PubMed  Google Scholar 

  50. Hung, Y. P., Albeck, J. G., Tantama, M. & Yellen, G. Imaging cytosolic NADH-NAD+ redox state with a genetically encoded fluorescent biosensor. Cell Metab. 14, 545–554 (2011)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references


We thank T. Hargesheimer, D. Liu, G. Klockgether, P. Hach, R. Appel and I. Kattelmann for technical assistance, A. Simpson, G. Strous and Fulvio Reggiori for comments on electron micrographs, and C. Hubert, E. Ruff, S. Ahmerkamp and N. Dubilier for discussions. This study was supported by European Research Council starting grant MASEM 242635 (M.S., E.H., J.C.), the Campus Alberta Innovation Chair Program (M.S., E.H., X.D.), the Canadian Foundation for Innovation (M.S), the Alberta Small Equipment Grant Program (M.S.), the German Federal State Nordrhein-Westfalen (M.S.), the Max Planck Society, and the Natural Sciences and Engineering Research Council of Canada for a Banting fellowship to M.K. and a Discovery Grant to M.S.

Author information

Authors and Affiliations



E.H. and J.C. performed sampling, cultivation and physiological experiments. M.K. performed proteomics and data analysis. D.R. performed transmission electron microscopy. S.L. and E.H. performed scanning electron microscopy. E.H. performed CARD-FISH imaging. H.T. performed next-generation sequencing, H.G.-V. performed read processing, assembly and binning. E.H. performed in silico processing of next-generation sequencing data with assistance from H.G.-V., X.D. and M.S. M.W.B., C.W.S. and A.J.R. analysed sequences for Arcobacter associated with S. tetraspora. E.H., B.V. and K.B performed chemical analysis with input from J.M, K.-U.H. and M.S. The experimental design was developed jointly by M.S., E.H., J.M., M.K. and K.-U.H. E.H. wrote the manuscript with input from all co-authors.

Corresponding authors

Correspondence to Emmo Hamann or Marc Strous.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Extended data figures and tables

Extended Data Figure 1 Micrographs for L. limosa and epibiotic Arcobacter.

a, Scanning electron micrograph showing L. limosa and associated bacteria. Pilus (1) connecting Arcobacter (5) with L. limosa. Pseudopodial extensions (2) are used for the acquisition of prey bacteria (3) (Alteromonas). Short anterior flagellum (4). Long posterior flagellum (6). b–e, CARD-FISH labelling with probes targeting the SSU rRNA of L. limosa (Euk516 in red) and Arcobacter (Epsy914 in green). The scale bar applies to all figures. fi, CARD-FISH labelling of L. limosa with probes targeting the SSU rRNA of A. macleodii (Alt184 in green). The scale bar applies to all figures. jr, Transmission electron micrographs showing different structural features of L. limosa. Mitochondria-related organelle (mro), nucleus (nucl), digestive vacuoles (dv), double basal body (bb), endoplasmic reticulum (er), inner (im) and outer membrane (om), tubular cristae (cristae), extracellular matrix (ex), bacterium (bac), membrane (mem), flagellum (flag), multivesicular body (mb). For a–i, each specimen shown represents at least ten specimens for which images were recorded.

Extended Data Figure 2 Relative abundance of L. limosa and co-enriched bacteria under different growth conditions.

The abundance of L. limosa and its associated microbiota was determined at three different conditions (treatments) with three independent experiments per treatment: 1–3, presence of nitrous oxide and prey bacteria; 4–6, absence of nitrous oxide and presence of prey bacteria; 7–9, presence of nitrous oxide, dissolved organic nutrients and hydrogen and absence of prey bacteria. Relative abundances were determined via proteomics and estimated on the basis of the total normalized spectrum count per population.

Extended Data Figure 3 Genome statistics for L. limosa and epibiotic Arcobacter.

The pie chart represents the classifications of gene models into functional categories for Arcobacter. Gene classifications were performed with the RAST functional annotations and the SEED subsystem database32.

Extended Data Figure 4 A new type of NAD(P)H-dependent Fe-hydrogenase.

The genome of L. limosa encoded a so far undescribed NAD(P)H-dependent Fe-hydrogenase. Genes with identical domain architecture were also identified in P. biforma and T. vaginalis (shown in bold type). The scale bars represent substitution rate per site. a, Phylogeny of the Fe-hydrogenases domain. b, Phylogeny of the NAD/NADP binding domain. Phylogenies were inferred by RAxML using the WAG amino-acid replacement matrix. c, Domain architecture of the NAD(P)H-dependent Fe-hydrogenase (2) compared with the domain architecture of Fe-hydrogenase (3) and the NADPH accepting domain of the cyt P450 reductase (1). The scale bar shows approximate amino-acid positions. d, Predicted electron flow within the NAD(P)H-dependent Fe-hydrogenase indicates the capability for a proton-dependent recycling of NAD(P)H. Note: the shape of the model does not intent to depict the actual three-dimensional structure of the protein.

Extended Data Figure 5 Maximum likelihood tree of quinone-reactive Ni/Fe-hydrogenases (subunit hydB).

The tree shows the phylogenetic relation of quinone-reactive Ni/Fe-hydrogenases from Arcobacter associated with S. tetraspora, P. biforma and L. limosa (indicated in red). Circles represent bootstrap support values for each node. The scale bar represents substitution rate per site.

Extended Data Figure 6 The fitness of L. limosa depends on its symbiont.

Syntrophy was enabled by the presence of nitrous oxide acting as electron acceptor for bacterial hydrogen oxidation. a, Inhibition of nitrous oxide reduction (addition of the competitive inhibitor acetylene, see arrow) led to a reduced growth of L. limosa and reduced respiration rates. To monitor respiration rates, 13C-enriched Alteromonas were added together with acetylene. Digestion of 13C-labelled bacteria by L. limosa led to the production of 13C-bicarbonate, which was measured after conversion to 13CO2 (right). Similar effects on the growth and respiration rates were observed after adding hydrogen (b) or hydrogen and acetate (c) to a culture. d, Growth of L. limosa and production of hydrogen and fatty acids while growing syntrophically (nitrous oxide present). e, Growth of L. limosa in the presence of antibacterial antibiotics (nitrous oxide absent). f, Growth of L. limosa in the presence of antibacterial antibiotics (nitrous oxide present). g, Growth of L. limosa in the presence of nitrate (2 mM) and oxygen (0.2 mM). Growth of L. limosa was compared with a culture that contained nitrous oxide (2.2 mM) and with a control culture that did not contain an electron acceptor for hydrogen oxidation. Each panel shows the results of at least five independent experiments, with cell numbers depicted as averages of seven cell counts per experiment; error bars, s.d.

Extended Data Figure 7 Expression levels for Arcobacter proteins involved in attachment and chemotaxis.

a. Expression level of proteins involved in attachment in the presence (red) and absence of L. limosa (blue). b, Expression level of proteins involved in chemotaxis. Expression levels were measured and averaged for three independent experiments per treatment (see also Extended Data Fig. 2). Error bars, s.d. See Supplementary Table 1 for gene accession numbers and statistical tests.

Extended Data Figure 8 Domain architecture of L. limosa fibronectin type III domain-containing proteins.

Protein architectures and conserved protein domains were identified using the SMART protein domain detection tools. See Supplementary Table 1 for gene accession numbers and expression levels.

Extended Data Table 1 Potential presence of Breviatea and Breviatea-associated Arcobacter detected in currently available shotgun metagenomes from marine sediments

Supplementary information

Supplementary Table 1

Accession numbers and per gene expression levels as determined with proteomics. (XLS 273 kb)

Supplementary Table 2

Calculation of the thermodynamic and kinetic feasibility of hydrogen transfer between L. limosa and Arcobacter. (XLS 10 kb)

Supplementary Information

This file contains Supplementary Notes regarding the diagnosis of Lenisia limosa gen. et sp. Nov (PDF 80 kb)

PowerPoint slides

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hamann, E., Gruber-Vodicka, H., Kleiner, M. et al. Environmental Breviatea harbour mutualistic Arcobacter epibionts. Nature 534, 254–258 (2016).

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI:

This article is cited by


By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing