Very little is known about Neanderthal cultures1, particularly early ones. Other than lithic implements and exceptional bone tools2, very few artefacts have been preserved. While those that do remain include red and black pigments3 and burial sites4, these indications of modernity are extremely sparse and few have been precisely dated, thus greatly limiting our knowledge of these predecessors of modern humans5. Here we report the dating of annular constructions made of broken stalagmites found deep in Bruniquel Cave in southwest France. The regular geometry of the stalagmite circles, the arrangement of broken stalagmites and several traces of fire demonstrate the anthropogenic origin of these constructions. Uranium-series dating of stalagmite regrowths on the structures and on burnt bone, combined with the dating of stalagmite tips in the structures, give a reliable and replicated age of 176.5 thousand years (±2.1 thousand years), making these edifices among the oldest known well-dated constructions made by humans. Their presence at 336 metres from the entrance of the cave indicates that humans from this period had already mastered the underground environment, which can be considered a major step in human modernity.

Access optionsAccess options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.


  1. 1.

    The Neanderthal Legacy. An Archaeological Perspective from Western Europe, (Princeton University Press, 1996)

  2. 2.

    et al. Neandertals made the first specialized bone tools in Europe. Proc. Natl Acad. Sci. USA 110, 14186–14190 (2013)

  3. 3.

    & Pigments, gravures, parures: les comportements controversés des Néandertaliens. In Les Néandertaliens, Biologie et Cultures (eds ) Doc. Préhist. 23, Paris, CTHS, 297–309 (2007)

  4. 4.

    & Les sépultures néandertaliennes. In Les Néandertaliens, Biologie et Cultures (eds & ) Doc. Préhist. 23, Paris: CTHS, 311–322 (2007)

  5. 5.

    & Neandertal Demise: An Archaeological Analysis of the Modern Human Superiority Complex. PLoS One 9, e96424 (2014)

  6. 6.

    , & La grotte de Bruniquel. Spelunca 60, 27–34 (1996)

  7. 7.

    La Grotte de Bruniquel (Tarn-et-Garonne). Inventaire au Sol des Vestiges Fauniques. Thesis, University of Toulouse Paul Sabatier (1996)

  8. 8.

    La Naissance de l'Art. Genèse de l'Art Préhistorique (Paris, Errance, 1999)

  9. 9.

    Neandertal social structure? Oxf. J. Archaeol. 31, 1–26 (2012)

  10. 10.

    et al. Improvements in 230Th dating, 230Th and 234U half-life values, and U-Th isotopic measurements by multi-collector inductively coupled plasma mass spectrometry. Earth Planet. Sci. Lett. 371–372, 82–91 (2013)

  11. 11.

    et al. Millennial climatic instability during penultimate glacial period recorded in a south-western France speleothem. Palaeogeogr., Palaeoclim. Palaeoecology 376, 122–131 (2013)

  12. 12.

    The origin of Neandertals. Proc. Natl Acad. Sci. USA 106, 16022–16027 (2009)

  13. 13.

    The management of space during the Paleolithic. Quatern. Int. 247, 212–229 (2012)

  14. 14.

    & The revolution that wasn’t: a new interpretation of the origin of modern human behavior. J. Hum. Evol. 39, 453–563 (2000)

  15. 15.

    The invisible frontier. A multiple species model for the origin of behavioral modernity. Evol. Anthropol. 12–4, 188–202 (2003)

  16. 16.

    in Molodova I: A Single Case of Mousterian Settlement in the Middle Dniestr Basin (in Russian) (ed. & ) 6–102 (Nauka, 1982)

  17. 17.

    Une Cabane Acheuléenne dans la Grotte du Lazaret à Nice. Vol. 7, Paris, Soc. Préhist. Franç. (1969)

  18. 18.

    et al. Bilzingsleben II. Homo erectus – Seine Kultur und Seine Umwelt. VEB Deutscher Verlag der Wissenschaften, Berlin (1983)

  19. 19.

    et al. Evidence of hominin control of fire at Gesher Benot Ya’aqov, Israel. Science 304, 725–727 (2004)

  20. 20.

    et al. Microstratigraphic evidence of in situ fire in the Acheulean strata of Wonderwerk Cave, Northern Cape Province, South Africa. Proc. Natl Acad. Sci. USA 109, 1215–1220 (2012)

  21. 21.

    & On the earliest evidence for habitual use of fire in Europe. Proc. Natl Acad. Sci. USA 108, 5209–5214 (2011)

  22. 22.

    et al. Les peintures paléolithiques de la grotte Chauvet-Pont d’Arc, à Vallon-Pont-d’Arc (Ardèche, France): datations directes et indirectes par la méthode du radiocarbon. C.R. Acad. Sc. Paris 320, 1133–1140 (1995)

  23. 23.

    et al. Cross dating (Th/U-14C) of calcite covering prehistoric paintings in Borneo. Quat. Res. 60, 172–179 (2003)

  24. 24.

    et al. Pleistocene cave art from Sulawesi, Indonesia. Nature 514, 223–227 (2014)

  25. 25.

    The cave petroglyphs of Australia. Aust. Aborig. Stud. 2, 64–68 (1990)

  26. 26.

    & (Eds) The Sima de los Huesos hominid site. J. Hum. Evol. 33 (special issue)

  27. 27.

    et al. U-Th ages constraining the Neanderthal footprint at Vârtop Cave, Romania. Quat. Sci. 24, 1151–1157 (2005)

  28. 28.

    , , & La Caverne des Trois-Frères, Paris Somogy- Assoc. L. Bégouën (2013)

  29. 29.

    et al. The social construction of caves and rockshelters: Chauvet Cave (France) and Nawarla Gabarnmang (Australia). Antiquity 87, 12–29 (2013)

  30. 30.

    et al. Climate and atmospheric history of the past 420,000 years from the Vostok ice core, Antarctica. Nature 399, 429–436 (1999)

  31. 31.

    , , & L’Igue des Rameaux (Saint-Antonin-Noble- Val, Tarn-et-Garonne). Un nouveau gisement du Pléistocène moyen. Premiers résultats. Paléo 2, 89–106 (1990)

  32. 32.

    . et al. In Modalités d'Occupations et Exploitation des Milieux au Paléolithique dans le Sud-Ouest de la France: l'Exemple du Quercy (eds , & ), Paléo 4 (suppl.), 231–270 (2013)

  33. 33.

    et al. In L’Art des Cavernes. Atlas des Grottes Ornées Françaises (Paris, Ministère de la Culture-Imprimerie Nationale), 540–551 (1984)

  34. 34.

    , , & Elementos de iluminación in Cueva de Árdales. Intervenciones arqueológicas 2011-2014 (eds , , & ) Ediciones Pinsapar, 119–146 (2014)

  35. 35.

    et al. In Actes du colloque MADAPCA, Micro Analyses et Datations de l’Art Préhistorique dans son Contexte Archéologique, MNHN-C2RMF, 16-18 novembre 2011. Paléo (special issue) 233–235 (2014)

  36. 36.

    , & Fabric characteristics of subaerial slope deposits. Sedimentology 44, 1–16 (1997)

  37. 37.

    & Fabric of Palaeolithic levels: methods and implications for site formation processes. J. Archaeol. Sci. 31, 457–469 (2004)

  38. 38.

    , , & Archaeological Prospecting and Remote Sensing. Cambridge, Cambridge University Press (1990)

  39. 39.

    Influence du feu sur les propriétés magnétiques du sol et sur celles du schiste et du granite. Ann. Geophys. 16, 159–195 (1960)

  40. 40.

    , & Thermally activated mineralogical transformations in archaeological hearths: inversion from maghemite (γFe2O3) phase to hematite (αFe2O3) form. Archaeol. Prospect. 13, 207–227 (2006)

  41. 41.

    & Different mechanisms of magnetisation recorded in experimental fires: archaeomagnetic implications. Earth Planet. Sci. Lett. 312, 176–187 (2011)

  42. 42.

    et al. Magnetic investigations of buried palaeohearths inside a Palaeolithic cave (Lazaret, Nice, France). Archaeol. Prospect. (2013)

  43. 43.

    et al. Thermal characterization of ancient hearths from the cave of Les Fraux (Dordogne, France) by thermoluminescence and magnetic susceptibility measurements. Quat. Geochronol. 10, 353–358 (2012)

  44. 44.

    et al. Benefits of an accurate 3D Documentation in Understanding the Status of the Bronze Age Heritage Cave ‘Les Fraux’ (France). Int. J. of Heritage in the Digital Era 1, 179–195 (2014)

  45. 45.

    & Differential burning, recrystallization, and fragmentation of archaeological bone. J. Archaeol. Sci. 22, 223–237 (1995)

  46. 46.

    et al. Application des micro-spectrométries infrarouges et Raman à l’étude des processus diagénétiques altérant les ossements paléolithiques. Rev. Archéométrie 35, 179–190 (2011)

  47. 47.

    , , & Estimating temperature exposure of burnt bone - a methodological review. Sci. Justice 55, 181–188 (2015)

  48. 48.

    , , & Carbons in the heart of energy and environment questions: a nanostructural approach. C. R. Geosci. 347, 124–133 (2015)

  49. 49.

    , & A Raman-HRTEM study of the carbonization of wood: a new Raman-based paleothermometer dedicated to archaeometry. Carbon (2016)

  50. 50.

    et al. Speleothem record of the last 180 ka in Villars cave (SW France): investigation of a large delta (18)O shift between MIS6 and MIS5. Quat. Sci. Rev. 30, 130–146 (2011)

Download references


We thank the owners of the cave (Nidauzel association), the French Ministry of Culture & Communication, MCC (DRAC-SRA Midi-Pyrénées, Toulouse), M. Vaginay, P. Chalard, É. Mauduit, the Speleological & Archaeological Society of Caussade (SSAC), CNRS (InEE & InSU), the University of Bordeaux-PACEA, LSCE Gif-s/-Yvette, M. O’Farrell and C. Garrec for editing, V. Feruglio for a drawing. We thank F. Dewilde and F. Mansouri (LSCE) for their assistance with the isotopic measurements, Y. Vanbrabant (Belgian Geological Survey) for his assistance with the cave monitoring and B. Martinez for his help with the topography. We thank S. Mariot and R. Weil (LPS, Paris-XI University, Orsay) for their help in the infrared spectrometry measurements. This work is mainly supported by French MCC (DRAC-SRA Midi-Pyrénées, Toulouse) and in part by the Belgian Science Policy Office. The U-Th dating was supported in part by the U.S. NSF.

Author information

Author notes

    • Jacques Jaubert
    • , Sophie Verheyden
    •  & Dominique Genty

    These authors contributed equally to this work.


  1. PACEA, UMR 5199 CNRS-UB-MCC University of Bordeaux, 33615 Pessac, France

    • Jacques Jaubert
    • , Catherine Ferrier
    •  & Frédéric Santos
  2. Earth & History of Life, Royal Belgian Institute of Natural Sciences, 1000 Brussels, Belgium

    • Sophie Verheyden
    •  & Christian Burlet
  3. AMGC, Vrije Universiteit Brussel, 1050 Brussels, Belgium

    • Sophie Verheyden
  4. LSCE, UMR 8212 CNRS-CEA-UVSQ, 91400 Gif-sur-Yvette, France

    • Dominique Genty
    • , Dominique Blamart
    •  & Édouard Régnier
  5. Société spéléologique et archéologique de Caussade, 5 rue Bourdelle 82300 Caussade, France

    • Michel Soulier
  6. Institute of Global Environmental Change, Xi’an Jiaotong University, Xi’an 710049, China

    • Hai Cheng
  7. Earth Sciences, University of Minnesota, Minneapolis, Minnesota 55455, USA

    • Hai Cheng
    •  & R. Lawrence Edwards
  8. Protée Expert Sas, 30250 Sommières, France

    • Hubert Camus
  9. Faculté Polytechnique, University of Mons, 7000-Mons, Belgium

    • Serge Delaby
  10. Laboratoire de Géologie de l'École Normale Supérieure de Paris (ENS), UMR CNRS 8538, 75000 Paris, France

    • Damien Deldicque
    •  & Jean-Noël Rouzaud
  11. Archéosphère, 11500 Quirbajou, France

    • François Lacrampe-Cuyaubère
  12. Get in Situ, 1091 Bourg-en-Lavaux, Switzerland

    • François Lacrampe-Cuyaubère
    •  & Xavier Muth
  13. LIENSs, UMR 7266 CNRS-University of La Rochelle, 17000 La Rochelle, France

    • François Lévêque
  14. Ministry of Culture, Regional Archaeological Service of Midi-Pyrénées, 31080 Toulouse, France

    • Frédéric Maksud
  15. Archéostransfert, Archéovision, UMS 3657 SHS-3D, 33007 Pessac, France

    • Pascal Mora


  1. Search for Jacques Jaubert in:

  2. Search for Sophie Verheyden in:

  3. Search for Dominique Genty in:

  4. Search for Michel Soulier in:

  5. Search for Hai Cheng in:

  6. Search for Dominique Blamart in:

  7. Search for Christian Burlet in:

  8. Search for Hubert Camus in:

  9. Search for Serge Delaby in:

  10. Search for Damien Deldicque in:

  11. Search for R. Lawrence Edwards in:

  12. Search for Catherine Ferrier in:

  13. Search for François Lacrampe-Cuyaubère in:

  14. Search for François Lévêque in:

  15. Search for Frédéric Maksud in:

  16. Search for Pascal Mora in:

  17. Search for Xavier Muth in:

  18. Search for Édouard Régnier in:

  19. Search for Jean-Noël Rouzaud in:

  20. Search for Frédéric Santos in:


J.J., S.V. and D.G. coordinated this study; they wrote the article and conducted the field sampling. M.S. participated in the cave discovery and is in charge of the logistical support and cave access. H.Ch. made the U-Th measurements and R.L.E. oversaw and helped to interpret the U/Th dates. D.B. conducted the δ18O and δ13C measurements. C.B. is responsible for the temperature monitoring. H.C., S.D. and X.M. realised the geographical and new topography studies of the cave. F.L.-C. realised the drawings. F.L. realised the magnetism measurements and their interpretation, D.D., D.G. and J.-N.R, the SEM-EDS, FTIR measurements and Raman spectrometry. F.M. participated in the field trips and archaeological survey. P.M. realised the photogrammetric work. C.F. realised the study of fireplaces and heated areas. É.R. participated in the field trips and the coring. F.S. is responsible for the statistical studies of the structure elements.

Competing interests

The authors declare no competing financial interests.

Corresponding authors

Correspondence to Jacques Jaubert or Sophie Verheyden or Dominique Genty.

Extended data

Supplementary information

PDF files

  1. 1.

    Supplementary Information

    This file contains Supplementary Methods, Supplementary Tables 1–2 and Supplementary Data.


  1. 1.

    3D-model of the structures in Bruniquel Cave

    The 3D-model clearly showing the different types of structures: two annular ones (with superposed layers of stalagmites), which are the most impressive constructions, and four smaller stalagmite accumulation structures (especially two in the centre of the main structure A).

About this article

Publication history






Further reading


By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.