Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Mean first-passage times of non-Markovian random walkers in confinement


The first-passage time, defined as the time a random walker takes to reach a target point in a confining domain, is a key quantity in the theory of stochastic processes1. Its importance comes from its crucial role in quantifying the efficiency of processes as varied as diffusion-limited reactions2,3, target search processes4 or the spread of diseases5. Most methods of determining the properties of first-passage time in confined domains have been limited to Markovian (memoryless) processes3,6,7. However, as soon as the random walker interacts with its environment, memory effects cannot be neglected: that is, the future motion of the random walker does not depend only on its current position, but also on its past trajectory. Examples of non-Markovian dynamics include single-file diffusion in narrow channels8, or the motion of a tracer particle either attached to a polymeric chain9 or diffusing in simple10 or complex fluids such as nematics11, dense soft colloids12 or viscoelastic solutions13,14. Here we introduce an analytical approach to calculate, in the limit of a large confining volume, the mean first-passage time of a Gaussian non-Markovian random walker to a target. The non-Markovian features of the dynamics are encompassed by determining the statistical properties of the fictitious trajectory that the random walker would follow after the first-passage event takes place, which are shown to govern the first-passage time kinetics. This analysis is applicable to a broad range of stochastic processes, which may be correlated at long times. Our theoretical predictions are confirmed by numerical simulations for several examples of non-Markovian processes, including the case of fractional Brownian motion in one and higher dimensions. These results reveal, on the basis of Gaussian processes, the importance of memory effects in first-passage statistics of non-Markovian random walkers in confinement.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Mean FPT of a random walker in confinement.
Figure 2: Mean FPT of one-dimensional non-Markovian random walks.
Figure 3: Mean FPT of two- and three-dimensional non-Markovian random walks.

Similar content being viewed by others


  1. Redner, S. A Guide to First- Passage Processes (Cambridge Univ. Press, 2001)

  2. ben Avraham, D. & Havlin, S. Diffusion and Reactions in Fractals and Disordered Systems (Cambridge Univ. Press, 2000)

  3. Bénichou, O. & Voituriez, R. From first-passage times of random walks in confinement to geometry-controlled kinetics. Phys. Rep. 539, 225–284 (2014)

    Article  MathSciNet  ADS  Google Scholar 

  4. Shlesinger, M. F. Mathematical physics: search research. Nature 443, 281–282 (2006)

    Article  CAS  ADS  Google Scholar 

  5. Lloyd, A. L. & May, R. M. Epidemiology—how viruses spread among computers and people. Science 292, 1316–1317 (2001)

    Article  CAS  Google Scholar 

  6. Condamin, S., Bénichou, O., Tejedor, V., Voituriez, R. & Klafter, J. First-passage times in complex scale-invariant media. Nature 450, 77–80 (2007)

    Article  CAS  ADS  Google Scholar 

  7. Bénichou, O., Chevalier, C., Klafter, J., Meyer, B. & Voituriez, R. Geometry-controlled kinetics. Nat. Chem. 2, 472–477 (2010)

    Article  Google Scholar 

  8. Wei, Q.-H., Bechinger, C. & Leiderer, P. Single-file diffusion of colloids in one-dimensional channels. Science 287, 625–627 (2000)

    Article  CAS  ADS  Google Scholar 

  9. Panja, D. Anomalous polymer dynamics is non-Markovian: memory effects and the generalized Langevin equation formulation. J. Stat. Mech. 2010, P06011 (2010)

    Google Scholar 

  10. Franosch, T. et al. Resonances arising from hydrodynamic memory in Brownian motion. Nature 478, 85–88 (2011)

    Article  CAS  ADS  Google Scholar 

  11. Turiv, T. et al. Effect of collective molecular reorientations on Brownian motion of colloids in nematic liquid crystal. Science 342, 1351–1354 (2013)

    Article  CAS  ADS  Google Scholar 

  12. Démery, V., Bénichou, O. & Jacquin, H. Generalized Langevin equations for a driven tracer in dense soft colloids: construction and applications. New J. Phys. 16, 053032 (2014)

    Article  ADS  Google Scholar 

  13. Ernst, D., Hellmann, M., Köhler, J. & Weiss, M. Fractional Brownian motion in crowded fluids. Soft Matter 8, 4886–4889 (2012)

    Article  CAS  ADS  Google Scholar 

  14. Mason, T. G. & Weitz, D. Optical measurements of frequency-dependent linear viscoelastic moduli of complex fluids. Phys. Rev. Lett. 74, 1250 (1995)

    Article  CAS  ADS  Google Scholar 

  15. Holcman, D. & Schuss, Z. The narrow escape problem. SIAM Rev. 56, 213–257 (2014)

    Article  MathSciNet  Google Scholar 

  16. Bénichou, O., Meyer, B., Tejedor, V. & Voituriez, R. Zero constant formula for first-passage observables in bounded domains. Phys. Rev. Lett. 101, 130601–130604 (2008)

    Article  ADS  Google Scholar 

  17. Guérin, T., Bénichou, O. & Voituriez, R. Non-markovian polymer reaction kinetics. Nat. Chem. 4, 568–573 (2012)

    Article  Google Scholar 

  18. Bénichou, O., Guérin, T. & Voituriez, R. Mean first-passage times in confined media: from Markovian to non-Markovian processes. J. Phys. A 48, 163001 (2015)

    Article  MathSciNet  ADS  Google Scholar 

  19. Kou, S. & Xie, X. S. Generalized Langevin equation with fractional Gaussian noise: subdiffusion within a single protein molecule. Phys. Rev. Lett. 93, 180603 (2004)

    Article  CAS  ADS  Google Scholar 

  20. Wilemski, G. & Fixman, M. Diffusion-controlled intrachain reactions of polymers. 1. Theory. J. Chem. Phys. 60, 866–877 (1974)

    Article  CAS  ADS  Google Scholar 

  21. Hanggi, P. & Talkner, P. First-passage time problems for non-Markovian processes. Phys. Rev. A 32, 1934–1937 (1985)

    Article  MathSciNet  CAS  ADS  Google Scholar 

  22. Masoliver, J., Lindenberg, K. & West, B. J. First-passage times for non-Markovian processes: correlated impacts on bound processes. Phys. Rev. A 34, 2351–2363 (1986)

    Article  MathSciNet  CAS  ADS  Google Scholar 

  23. Krug, J. et al. Persistence exponents for fluctuating interfaces. Phys. Rev. E 56, 2702 (1997)

    Article  CAS  ADS  Google Scholar 

  24. Molchan, G. Maximum of a fractional Brownian motion: probabilities of small values. Commun. Math. Phys. 205, 97–111 (1999)

    Article  MathSciNet  ADS  Google Scholar 

  25. Bray, A. J., Majumdar, S. N. & Schehr, G. Persistence and first-passage properties in nonequilibrium systems. Adv. Phys. 62, 225–361 (2013)

    Article  CAS  ADS  Google Scholar 

  26. Noh, J. D. & Rieger, H. Random walks on complex networks. Phys. Rev. Lett. 92, 118701 (2004)

    Article  ADS  Google Scholar 

  27. Ochab-Marcinek, A. & Hołyst, R. Scale-dependent diffusion of spheres in solutions of flexible and rigid polymers: mean square displacement and autocorrelation function for FCS and DLS measurements. Soft Matter 7, 7366–7374 (2011)

    Article  CAS  ADS  Google Scholar 

  28. Mandelbrot, B. B. & Wallis, J. R. Noah, Joseph, and operational hydrology. Wat. Resour. Res. 4, 909–918 (1968)

    Article  ADS  Google Scholar 

  29. Cutland, N. J., Kopp, P. E. & Willinger, W. Stock price returns and the Joseph effect: a fractional version of the Black–Scholes model. In Seminar on Stochastic Analysis, Random Fields and Applications 327–351 (Springer, 1995)

  30. Burnecki, K. et al. Universal algorithm for identification of fractional Brownian motion. A case of telomere subdiffusion. Biophys. J. 103, 1839–1847 (2012)

    Article  CAS  ADS  Google Scholar 

Download references


This work was supported by ERC grant FPTOpt-277998.

Author information

Authors and Affiliations



All authors contributed equally to this work.

Corresponding authors

Correspondence to O. Bénichou or R. Voituriez.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Additional information

Reviewer Information Nature thanks K. Lindenberg and the other anonymous reviewer(s) for their contribution to the peer review of this work.

Supplementary information

Supplementary Information

This file contains Supplementary Text and Data and Supplementary Figures 1-6. (PDF 1387 kb)

PowerPoint slides

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Guérin, T., Levernier, N., Bénichou, O. et al. Mean first-passage times of non-Markovian random walkers in confinement. Nature 534, 356–359 (2016).

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI:

This article is cited by


By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing