Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

An autonomous chemically fuelled small-molecule motor


Molecular machines are among the most complex of all functional molecules and lie at the heart of nearly every biological process1. A number of synthetic small-molecule machines have been developed2, including molecular muscles3,4, synthesizers5,6, pumps7,8,9, walkers10, transporters11 and light-driven12,13,14,15,16 and electrically17,18 driven rotary motors. However, although biological molecular motors are powered by chemical gradients or the hydrolysis of adenosine triphosphate (ATP)1, so far there are no synthetic small-molecule motors that can operate autonomously using chemical energy (that is, the components move with net directionality as long as a chemical fuel is present)19. Here we describe a system in which a small molecular ring (macrocycle) is continuously transported directionally around a cyclic molecular track when powered by irreversible reactions of a chemical fuel, 9-fluorenylmethoxycarbonyl chloride. Key to the design is that the rate of reaction of this fuel with reactive sites on the cyclic track is faster when the macrocycle is far from the reactive site than when it is near to it. We find that a bulky pyridine-based catalyst promotes carbonate-forming reactions that ratchet the displacement of the macrocycle away from the reactive sites on the track. Under reaction conditions where both attachment and cleavage of the 9-fluorenylmethoxycarbonyl groups occur through different processes, and the cleavage reaction occurs at a rate independent of macrocycle location, net directional rotation of the molecular motor continues for as long as unreacted fuel remains. We anticipate that autonomous chemically fuelled molecular motors will find application as engines in molecular nanotechnology2,19,20.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Operation of a chemically fuelled [2]catenane rotary motor.
Figure 2: [2]Rotaxane model system to demonstrate directional bias for Fmoc addition and position-independent Fmoc cleavage.
Figure 3: Exchange of Fmoc groups during stepwise operation of catenane 1.
Figure 4: Directional transport of the macrocycle monitored by 1H NMR spectroscopy.

Similar content being viewed by others


  1. Schliwa, M. & Woehlke, G. Molecular motors. Nature 422, 759–765 (2003)

    Article  ADS  CAS  Google Scholar 

  2. Erbas-Cakmak, S., Leigh, D. A., McTernan, C. T. & Nussbaumer, A. L. Artificial molecular machines. Chem. Rev. 115, 10081–10206 (2015)

    Article  CAS  Google Scholar 

  3. Jiménez, M. C., Dietrich-Buchecker, C. & Sauvage, J.-P. Towards synthetic molecular muscles: contraction and stretching of a linear rotaxane dimer. Angew. Chem. Int. Ed. 39, 3284–3287 (2000)

    Article  Google Scholar 

  4. Bruns, C. J. & Stoddart, J. F. Rotaxane-based molecular muscles. Acc. Chem. Res. 47, 2186–2199 (2014)

    Article  CAS  Google Scholar 

  5. Thordarson, P., Bijsterveld, E. J. A., Rowan, A. E. & Nolte, R. J. M. Epoxidation of polybutadiene by a topologically linked catalyst. Nature 424, 915–918 (2003)

    Article  ADS  CAS  Google Scholar 

  6. Lewandowski, B. et al. Sequence-specific peptide synthesis by an artificial small-molecule machine. Science 339, 189–193 (2013)

    Article  ADS  CAS  Google Scholar 

  7. Serreli, V., Lee, C.-F., Kay, E. R. & Leigh, D. A. A molecular information ratchet. Nature 445, 523–527 (2007)

    Article  ADS  CAS  Google Scholar 

  8. Ragazzon, G., Baroncini, M., Silvi, S., Venturi, M. & Credi, A. Light-powered autonomous and directional molecular motion of a dissipative self-assembling system. Nature Nanotechnol. 10, 70–75 (2014)

    Article  ADS  Google Scholar 

  9. Cheng, C. et al. An artificial molecular pump. Nature Nanotechnol. 10, 547–553 (2015)

    Article  ADS  CAS  Google Scholar 

  10. von Delius, M., Geertsema, E. M. & Leigh, D. A. A synthetic small molecule that can walk down a track. Nature Chem. 2, 96–101 (2010)

    Article  ADS  CAS  Google Scholar 

  11. Kassem, S., Lee, A. T. L., Leigh, D. A., Markevicius, A. & Solà, J. Pick-up, transport and release of a molecular cargo using a small-molecule robotic arm. Nature Chem. 8, 138–143 (2016)

    Article  ADS  CAS  Google Scholar 

  12. Koumura, N., Zijlstra, R. W. J., van Delden, R. A., Harada, N. & Feringa, B. L. Light-driven monodirectional molecular rotor. Nature 401, 152–155 (1999)

    Article  ADS  CAS  Google Scholar 

  13. Eelkema, R. et al. Molecular machines: nanomotor rotates microscale objects. Nature 440, 163 (2006)

    Article  ADS  CAS  Google Scholar 

  14. Greb, L. & Lehn, J.-M. Light-driven molecular motors: imines as four-step or two-step unidirectional rotors. J. Am. Chem. Soc. 136, 13114–13117 (2014)

    Article  CAS  Google Scholar 

  15. Li, Q. et al. Macroscopic contraction of a gel induced by the integrated motion of light-driven molecular motors. Nature Nanotechnol. 10, 161–165 (2015)

    Article  ADS  Google Scholar 

  16. Greb, L., Eichhöfer, A. & Lehn, J.-M. Synthetic molecular motors: thermal N inversion and directional photoinduced C=N bond rotation of camphorquinone imines. Angew. Chem. Int. Ed. 54, 14345–14348 (2015)

    Article  CAS  Google Scholar 

  17. Tierney, H. L. et al. Experimental demonstration of a single-molecule electric motor. Nature Nanotechnol. 6, 625–629 (2011)

    Article  ADS  CAS  Google Scholar 

  18. Perera, U. G. E. et al. Controlled clockwise and anticlockwise rotational switching of a molecular motor. Nature Nanotechnol. 8, 46–51 (2012)

    Article  ADS  Google Scholar 

  19. Kay, E. R. & Leigh, D. A. Rise of the molecular machines. Angew. Chem. Int. Ed. 54, 10080–10088 (2015)

    Article  CAS  Google Scholar 

  20. Astumian, R. D. Microscopic reversibility as the organizing principle of molecular machines. Nature Nanotechnol. 7, 684–688 (2012)

    Article  ADS  CAS  Google Scholar 

  21. Feynman, R. P., Leighton, R. B. & Sands, M. The Feynman Lectures on Physics Vol. 1, Ch. 46 (Addison-Wesley, 1963)

  22. Kelly, T. R., Tellitu, I. & Sestelo, J. P. In search of molecular ratchets. Angew. Chem. Int. Edn Engl. 36, 1866–1868 (1997)

    Article  CAS  Google Scholar 

  23. Kelly, T. R., De Silva, H. & Silva, R. A. Unidirectional rotary motion in a molecular system. Nature 401, 150–152 (1999)

    Article  ADS  CAS  Google Scholar 

  24. Kelly, T. R. et al. Progress toward a rationally designed, chemically powered rotary molecular motor. J. Am. Chem. Soc. 129, 376–386 (2007)

    Article  CAS  Google Scholar 

  25. Leigh, D. A., Wong, J. K. Y., Dehez, F. & Zerbetto, F. Unidirectional rotation in a mechanically interlocked molecular rotor. Nature 424, 174–179 (2003)

    Article  ADS  CAS  Google Scholar 

  26. Hernández, J. V., Kay, E. R. & Leigh, D. A. A reversible synthetic rotary molecular motor. Science 306, 1532–1537 (2004)

    Article  ADS  Google Scholar 

  27. Fletcher, S. P., Dumur, F., Pollard, M. M. & Feringa, B. L. A reversible, unidirectional molecular rotary motor driven by chemical energy. Science 310, 80–82 (2005)

    Article  ADS  CAS  Google Scholar 

  28. Haberhauer, G. A molecular four-stroke motor. Angew. Chem. Int. Ed. 50, 6415–6418 (2011)

    Article  CAS  Google Scholar 

  29. Lu, C.-H., Cecconello, A., Elbaz, J., Credi, A. & Willner, I. A three-station DNA catenane rotary motor with controlled directionality. Nano Lett. 13, 2303–2308 (2013)

    Article  ADS  CAS  Google Scholar 

  30. Davis, A. P. Tilting at windmills? The second law survives. Angew. Chem. Int. Ed. 37, 909–910 (1998)

    Article  ADS  CAS  Google Scholar 

  31. Alvarez-Pérez, M., Goldup, S. M., Leigh, D. A. & Slawin, A. M. Z. A chemically-driven molecular information ratchet. J. Am. Chem. Soc. 130, 1836–1838 (2008)

    Article  Google Scholar 

  32. Carlone, A., Goldup, S. M., Lebrasseur, N., Leigh, D. A. & Wilson, A. A three-compartment chemically-driven molecular information ratchet. J. Am. Chem. Soc. 134, 8321–8323 (2012)

    Article  CAS  Google Scholar 

  33. Cheng, C., McGonigal, P. R., Stoddart, J. F. & Astumian, R. D. Design and synthesis of nonequilibrium systems. ACS Nano 9, 8672–8688 (2015)

    Article  CAS  Google Scholar 

Download references


We thank D. R. Astumian for the analysis of the catenane motor reaction kinetics, the European Research Council (ERC) for funding and the EPSRC National Mass Spectrometry Service Centre (Swansea, UK) for high-resolution mass spectrometry.

Author information

Authors and Affiliations



M.R.W., A.C., J.S., S.M.G. and N.L. carried out the experimental work. M.R.W. and J.S. designed and performed the operation experiments. D.A.L. directed the research. All the authors contributed to the analysis of the results and the writing of the manuscript.

Corresponding author

Correspondence to David A. Leigh.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

This file contains Supplementary Text and Data, Supplementary Figures 1-77 and additional references (see Contents for more details). (PDF 10992 kb)

PowerPoint slides

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wilson, M., Solà, J., Carlone, A. et al. An autonomous chemically fuelled small-molecule motor. Nature 534, 235–240 (2016).

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI:

This article is cited by


By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing