Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Suppressing star formation in quiescent galaxies with supermassive black hole winds


Quiescent galaxies with little or no ongoing star formation dominate the population of galaxies with masses above 2 × 1010 times that of the Sun; the number of quiescent galaxies has increased by a factor of about 25 over the past ten billion years (refs 1, 2, 3, 4). Once star formation has been shut down, perhaps during the quasar phase of rapid accretion onto a supermassive black hole5,6,7, an unknown mechanism must remove or heat the gas that is subsequently accreted from either stellar mass loss8 or mergers and that would otherwise cool to form stars9,10. Energy output from a black hole accreting at a low rate has been proposed11,12,13, but observational evidence for this in the form of expanding hot gas shells is indirect and limited to radio galaxies at the centres of clusters14,15, which are too rare to explain the vast majority of the quiescent population16. Here we report bisymmetric emission features co-aligned with strong ionized-gas velocity gradients from which we infer the presence of centrally driven winds in typical quiescent galaxies that host low-luminosity active nuclei. These galaxies are surprisingly common, accounting for as much as ten per cent of the quiescent population with masses around 2 × 1010 times that of the Sun. In a prototypical example, we calculate that the energy input from the galaxy’s low-level active supermassive black hole is capable of driving the observed wind, which contains sufficient mechanical energy to heat ambient, cooler gas (also detected) and thereby suppress star formation.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Figure 1: Akira is the prototypical red geyser.
Figure 2: Wind model.
Figure 3: Diagnostic line-ratio maps of Akira.


  1. 1

    Bell, E. F. et al. Nearly 5000 distant early-type galaxies in COMBO-17: a red sequence and its evolution since z ~ 1. Astrophys. J. 608, 752–767 (2004)

    ADS  Article  Google Scholar 

  2. 2

    Bundy, K. et al. The mass assembly history of field galaxies: detection of an evolving mass limit for star-forming galaxies. Astrophys. J. 651, 120–141 (2006)

    ADS  CAS  Article  Google Scholar 

  3. 3

    Faber, S. M. et al. Galaxy luminosity functions to z ~ 1 from DEEP2 and COMBO-17: implications for red galaxy formation. Astrophys. J. 665, 265–294 (2007)

    ADS  CAS  Article  Google Scholar 

  4. 4

    Ilbert, O. et al. Galaxy stellar mass assembly between 0.2 < z < 2 from the S-COSMO survey. Astrophys. J. 709, 644–663 (2010)

    ADS  CAS  Article  Google Scholar 

  5. 5

    Di Matteo, T., Springel, V. & Hernquist, L. Energy input from quasars regulates the growth and activity of black holes and their host galaxies. Nature 433, 604–607 (2005)

    ADS  CAS  PubMed  Article  PubMed Central  Google Scholar 

  6. 6

    Hopkins, P. F. et al. A unified, merger-driven model of the origin of starbursts, quasars, the cosmic X-ray background, supermassive black holes, and galaxy spheroids. Astrophys. J. 163, 1–49 (2006)

    CAS  Article  Google Scholar 

  7. 7

    Heckman, T. M. & Best, P. N. The coevolution of galaxies and supermassive black holes: insights from surveys of the contemporary universe. Annu. Rev. Astron. Astrophys. 52, 589–660 (2014)

    ADS  Article  Google Scholar 

  8. 8

    Ciotti, L. & Ostriker, J. P. Cooling flows and quasars: different aspects of the same phenomenon? I. Concepts. Astrophys. J. 487, L105–L108 (1997)

    ADS  Article  Google Scholar 

  9. 9

    Benson, A. J. et al. What shapes the luminosity function of galaxies? Astrophys. J. 599, 38–49 (2003)

    ADS  Article  Google Scholar 

  10. 10

    Booth, C. M. & Schaye, J. The interaction between feedback from active galactic nuclei and supernovae. Sci. Rep. 3, 1738 (2013)

    CAS  Article  Google Scholar 

  11. 11

    Croton, D. J. et al. The many lives of active galactic nuclei: cooling flows, black holes and the luminosities and colours of galaxies. Mon. Not. R. Astron. Soc. 365, 11–28 (2006)

    ADS  Article  Google Scholar 

  12. 12

    Bower, R. G. et al. Breaking the hierarchy of galaxy formation. Mon. Not. R. Astron. Soc. 370, 645–655 (2006)

    ADS  CAS  Article  Google Scholar 

  13. 13

    Ciotti, L., Ostriker, J. P. & Proga, D. Feedback from central black holes in elliptical galaxies. III. Models with both radiative and mechanical feedback. Astrophys. J. 717, 708–723 (2010)

    ADS  Article  Google Scholar 

  14. 14

    Fabian, A. C. A very deep Chandra observation of the Perseus cluster: shocks, ripples and conduction. Mon. Not. R. Astron. Soc. 366, 417–428 (2006)

    ADS  CAS  Article  Google Scholar 

  15. 15

    Fabian, A. C. Observational evidence of active galactic nuclei feedback. Annu. Rev. Astron. Astrophys. 50, 455–489 (2012)

    ADS  CAS  Article  Google Scholar 

  16. 16

    Lin, Y.-T. & Mohr, J. J. Radio sources in galaxy clusters: radial distribution, and 1.4 GHz and K-band bivariate luminosity function. Astrophys. J. Suppl. Ser. 170, 71–94 (2007)

    ADS  Article  Google Scholar 

  17. 17

    Bundy, K. et al. Overview of the SDSS-IV MaNGA survey: mapping nearby galaxies at Apache Point observatory. Astrophys. J. 798, 7 (2015)

    ADS  Article  Google Scholar 

  18. 18

    Yang, X. et al. Galaxy groups in the SDSS DR4. I. The catalog and basic properties. Astrophys. J. 671, 153–170 (2007)

    ADS  Article  Google Scholar 

  19. 19

    Chang, Y.-Y., van der Wel, A., da Cunha, E. & Rix, H.-W. Stellar masses and star formation rates for 1M galaxies from SDSS+WISE. Astrophys. J. Suppl. Ser. 219, 8 (2015)

    ADS  Article  CAS  Google Scholar 

  20. 20

    Sarzi, M. et al. The SAURON project — XVI. On the sources of ionization for the gas in elliptical and lenticular galaxies. Mon. Not. R. Astron. Soc. 402, 2187–2210 (2010)

    ADS  CAS  Article  Google Scholar 

  21. 21

    Yan, R. & Blanton, M. R. The nature of LINER-like emission in red galaxies. Astrophys. J. 747, 61 (2012)

    ADS  Article  CAS  Google Scholar 

  22. 22

    Belfiore, F. et al. P-MaNGA galaxies: emission-lines properties — the gas ionization and chemical abundances from prototype observations. Mon. Not. R. Astron. Soc. 449, 867–900 (2015)

    ADS  CAS  Article  Google Scholar 

  23. 23

    Kehrig, C. et al. The ionized gas in the CALIFA early-type galaxies. Astron. Astrophys. 540, A11 (2012)

    Article  CAS  Google Scholar 

  24. 24

    Allen, J. T. et al. The SAMI galaxy survey: unveiling the nature of kinematically offset active galactic nuclei. Mon. Not. R. Astron. Soc. 451, 2780–2792 (2015)

    ADS  CAS  Article  Google Scholar 

  25. 25

    Gomes, J. M. et al. The warm ionized gas in CALIFA early-type galaxies: 2D emission-line patterns and kinematics for 32 galaxies. Astron. Astrophys. 588, A68 (2016)

    Article  CAS  Google Scholar 

  26. 26

    Lagos, C. P. et al. The origin of the atomic and molecular gas contents of early-type galaxies — II. Misaligned gas accretion. Mon. Not. R. Astron. Soc. 448, 1271–1287 (2015)

    ADS  Article  CAS  Google Scholar 

  27. 27

    Allen, M. G., Groves, B. A., Dopita, M. A., Sutherland, R. S. & Kewley, L. J. The MAPPINGS III library of fast radiative shock models. Astrophys. J. Suppl. Ser. 178, 20–55 (2008)

    ADS  CAS  Article  Google Scholar 

  28. 28

    Ostriker, J. P., Choi, E., Ciotti, L., Novack, G. S. & Proga, D. Momentum driving: which physical processes dominate active galactic nucleus feedback? Astrophys. J. 722, 642–652 (2010)

    ADS  Article  Google Scholar 

  29. 29

    Yuan, F. & Narayan, R. Hot accretions flows around black holes. Annu. Rev. Astron. Astrophys. 52, 529–588 (2014)

    ADS  Article  Google Scholar 

  30. 30

    Hopkins, P. F. et al. Mergers and bulge formation in ΛCDM: which mergers matter? Astrophys. J. 715, 202–229 (2010)

    ADS  Article  Google Scholar 

  31. 31

    Drory, N. et al. The MaNGA integral field unit fiber feed system for the Sloan 2.5 m telescope. Astron. J. 149, 77 (2015)

    ADS  Article  Google Scholar 

  32. 32

    Law, D. R. et al. Observing strategy for the SDSS-IV/MaNGA IFU galaxy survey. Astron. J. 150, 19 (2015)

    ADS  Article  CAS  Google Scholar 

  33. 33

    Gunn, J. E. et al. The 2.5 m telescope of the Sloan Digital Sky Survey. Astron. J. 131, 2332–2359 (2006)

    ADS  Article  Google Scholar 

  34. 34

    Blanton, M. (2009; accessed 30 April 2016).

  35. 35

    The MPA-JHU DR7 release of spectrum measurements. (2010; accessed 30 April 2016)

  36. 36

    Oke, J. B. & Gunn, J. E. Secondary standard stars for absolute spectrophotometry. Astrophys. J. 266, 713–717 (1983)

    ADS  CAS  Article  Google Scholar 

  37. 37

    Cappellari, M. & Emsellem, E. Parametric recovery of line-of-sight velocity distributions from absorption-line spectra of galaxies via penalized likelihood. Publ. Astron. Soc. Pacif. 116, 138–147 (2004)

    ADS  Article  Google Scholar 

  38. 38

    Vazdekis, A. et al. MIUSCAT: extended MILES spectral coverage — I. Stellar population synthesis models. Mon. Not. R. Astron. Soc. 424, 157–171 (2012)

    ADS  CAS  Article  Google Scholar 

  39. 39

    Yan, R. et al. On the origin of [OII] emission in red-sequence and poststarburst galaxies. Astrophys. J. 648, 281–298 (2006)

    ADS  CAS  Article  Google Scholar 

  40. 40

    Harrison, C. M., Alexander, D. M., Mullaney, J. R. & Swinbank, A. M. Kiloparsec-scale outflows are prevalent among luminous AGN: outflows and feedback in the context of the overall AGN population. Mon. Not. R. Astron. Soc. 441, 3306–3347 (2014)

    ADS  CAS  Article  Google Scholar 

  41. 41

    Fritz, J. et al. WINGS-SPE II: a catalog of stellar ages and star formation histories, stellar masses and dust extinction values for local clusters galaxies. Astron. Astrophys. 526, A45 (2011)

    Article  Google Scholar 

  42. 42

    Fritz, J. et al. WINGS-SPE. III. Equivalent width measurements, spectral properties, and evolution of local cluster galaxies. Astron. Astrophys. 566, A32 (2014)

    Article  CAS  Google Scholar 

  43. 43

    Chen, Y.-M. et al. Absorption-line probes of the prevalence and properties of outflows in present-day star-forming galaxies. Astron. J. 140, 445–461 (2010)

    ADS  CAS  Article  Google Scholar 

  44. 44

    Springel, V. The cosmological simulation code GADGET-2. Mon. Not. R. Astron. Soc. 364, 1105–1134 (2005)

    ADS  Article  Google Scholar 

  45. 45

    Peirani, S. et al. Composite star formation histories of early-type galaxies from minor mergers: prospects for WFC3. Mon. Not. R. Astron. Soc. 405, 2327–2338 (2010)

    ADS  Google Scholar 

  46. 46

    Cappellari, M. Measuring the inclination and mass-to-light ratio of axisymmetric galaxies via anisotropic Jeans models of stellar kinematics. Mon. Not. R. Astron. Soc. 390, 71–86 (2008)

    ADS  Article  Google Scholar 

  47. 47

    Emsellem, E., Monnet, G. & Bacon, R. The multi-Gaussian expansion method: a tool for building realistic photometric and kinematical models of stellar systems I. The formalism. Astron. Astrophys. 285, 723–738 (1994)

    ADS  Google Scholar 

  48. 48

    Cappellari, M. Efficient multi-Gaussian expansion of galaxies. Mon. Not. R. Astron. Soc. 333, 400–410 (2002)

    ADS  Article  Google Scholar 

  49. 49

    Navarro, J. F., Frenk, C. S. & White, S. D. M. The structure of cold dark matter halos. Astrophys. J. 462, 563–575 (1996)

    ADS  CAS  Article  Google Scholar 

  50. 50

    Li, H. et al. Assessing the Jeans anisotropic multi-Gaussian expansion method with the Illustris simulation. Mon. Not. R. Astron. Soc. 455, 3680–3692 (2016)

    ADS  CAS  Article  Google Scholar 

  51. 51

    Andersen, D. R. & Bershady, M. A. The photometric and kinematic structure of face-on disk galaxies. III. Kinematic inclinations from Hα velocity fields. Astrophys. J. 768, 41 (2013)

    ADS  Article  CAS  Google Scholar 

  52. 52

    Peng, C. Y., Ho, L. C., Impey, C. D. & Rix, H.-W. Detailed structural decomposition of galaxy images. Astron. J. 124, 266–293 (2002)

    ADS  Article  Google Scholar 

  53. 53

    Bershady, M. A. et al. Galaxy disks are submaximal. Astrophys. J. 739, L47 (2011)

    ADS  Article  Google Scholar 

  54. 54

    Tohline, J. E., Simonson, G. F. & Caldwell, N. Using gaseous disks to probe the geometric structure of elliptical galaxies. Astrophys. J. 252, 92–101 (1982)

    ADS  Article  Google Scholar 

  55. 55

    van de Voort, F. et al. The creation and persistence of a misaligned gas disc in a simulated early-type galaxy. Mon. Not. R. Astron. Soc. 451, 3269–3277 (2015)

    ADS  CAS  Article  Google Scholar 

  56. 56

    Bouché, N. et al. Physical properties of galactic winds using background quasars. Mon. Not. R. Astron. Soc. 426, 801–815 (2012)

    ADS  Article  CAS  Google Scholar 

  57. 57

    Dehnen, W. & Gerhard, O. E. Two-integral models of oblate elliptical galaxies with cusps. Mon. Not. R. Astron. Soc. 268, 1019–1032 (1994)

    ADS  Article  Google Scholar 

  58. 58

    Becker, R. H., White, R. L. & Helfand, D. J. The FIRST survey: faint images of the radio sky at twenty centimeters. Astrophys. J. 450, 559–577 (1995)

    ADS  Article  Google Scholar 

  59. 59

    Kennicutt, R. C. & Evans, N. J. Star formation in the Milky Way and nearby galaxies. Annu. Rev. Astron. Astrophys. 50, 531–608 (2012)

    ADS  CAS  Article  Google Scholar 

  60. 60

    Best, P. N. & Heckman, T. M. On the fundamental dichotomy in the local radio-AGN population: accretion, evolution and host galaxy properties. Mon. Not. R. Astron. Soc. 421, 1569–1582 (2012)

    ADS  Article  Google Scholar 

  61. 61

    Heckman, T. M. et al. Present-day growth of black holes and bulges: the Sloan Digital Sky Survey perspective. Astrophys. J. 613, 109–118 (2004)

    ADS  CAS  Article  Google Scholar 

  62. 62

    Cavagnolo, K. W. et al. A relationship between AGN jet power and radio power. Astrophys. J. 720, 1066–1072 (2010)

    ADS  CAS  Article  Google Scholar 

  63. 63

    McConnell, N. J. & Ma, C.-P. Revisiting the scaling relations of black hole masses and host galaxy properties. Astrophys. J. 764, 184 (2013)

    ADS  Article  Google Scholar 

  64. 64

    Osterbrock, D. E. Astrophysics of Gaseous Nebulae and Active Galactic Nuclei (University Science Books, Mill Valley, 1989)

  65. 65

    Genzel, R. et al. The SINS survey of z ~ 2 galaxy kinematics: properties of the giant star-forming clumps. Astrophys. J. 733, 101 (2011)

    ADS  Article  CAS  Google Scholar 

  66. 66

    Carniani, S. et al. Ionised outflows in z ~ 2.4 quasar host galaxies. Astron. Astrophys. 580, A102 (2015)

    Article  Google Scholar 

  67. 67

    Sutherland, R. S. & Dopita, M. A. Cooling functions for low-density astrophysical plasmas. Astrophys. J. Suppl. Ser. 88, 253–327 (1993)

    ADS  CAS  Article  Google Scholar 

  68. 68

    Bohlin, R. C., Savage, B. D. & Drake, J. F. A survey of interstellar H I from L-alpha absorption measurements. II. Astrophys. J. 224, 132–142 (1978)

    ADS  CAS  Article  Google Scholar 

  69. 69

    Kennicutt, R. C. Jr et al. Star formation in NGC 5194 (M51a). II. The spatially resolved star formation law. Astrophys. J. 671, 333–348 (2007)

    ADS  CAS  Article  Google Scholar 

  70. 70

    Bershady, M. A. et al. The DiskMass survey. I. Overview. Astrophys. J. 716, 198–233 (2010)

    ADS  CAS  Article  Google Scholar 

Download references


We are grateful to Y.-Y. Chang for checks on the SED fitting and implied SFR. We thank S. Juneau, J. Newman, H. Fu, K. Nyland, and S. F. Sánchez for discussions and comments. This work was supported by the World Premier International Research Center Initiative (WPI Initiative), MEXT, Japan, and JSPS KAKENHI grant no. 15K17603. A.W. acknowledges support of a Leverhulme Trust Early Career Fellowship. S.P. acknowledges support from the Japan Society for the Promotion of Science (JSPS long-term invitation fellowship). M.C. acknowledges support from a Royal Society University Research Fellowship. W.R. is supported by a CUniverse Grant (CUAASC) from Chulalongkorn University. Funding for the Sloan Digital Sky Survey IV (SDSS-VI) has been provided by the Alfred P. Sloan Foundation, the US Department of Energy Office of Science, and the Participating Institutions. SDSS-IV acknowledges support and resources from the Center for High-Performance Computing at the University of Utah. The SDSS website is SDSS-IV is managed by the Astrophysical Research Consortium for the Participating Institutions of the SDSS Collaboration, including the Brazilian Participation Group, the Carnegie Institution for Science, Carnegie Mellon University, the Chilean Participation Group, the French Participation Group, Harvard-Smithsonian Center for Astrophysics, Instituto de Astrofísica de Canarias, The Johns Hopkins University, Kavli Institute for the Physics and Mathematics of the Universe (IPMU)/University of Tokyo, Lawrence Berkeley National Laboratory, Leibniz Institut für Astrophysik Potsdam (AIP), Max-Planck-Institut für Astronomie (MPIA Heidelberg), Max-Planck-Institut für Astrophysik (MPA Garching), Max-Planck-Institut für Extraterrestrische Physik (MPE), National Astronomical Observatory of China, New Mexico State University, New York University, University of Notre Dame, Observatório Nacional/MCTI, The Ohio State University, Pennsylvania State University, Shanghai Astronomical Observatory, UK Participation Group, Universidad Nacional Autónoma de México, University of Arizona, University of Colorado Boulder, University of Oxford, University of Portsmouth, University of Utah, University of Virginia, University of Washington, University of Wisconsin, Vanderbilt University and Yale University.

Author information




E.C. and K.B. discovered the described sources, interpreted the observations, built the wind model, and wrote the manuscript. M.C. constructed dynamical models. S.P. carried out numerical merger simulations to model the data. W.R. obtained and reduced the JVLA data. K.W. fitted disk models. K.B., R.Y., M.B., N.D., D.R.L., D.A.W., K.Z., A.W., K.L.M. and D.T. contributed to the design and execution of the survey. F.B. provided initial velocity and line-ratio maps. B.V. provided the modelled extinction map. Y.C. and K.R. contributed to the Na D interpretation. All authors contributed to the interpretation of the observations and the writing of the paper.

Corresponding author

Correspondence to Edmond Cheung.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Extended data figures and tables

Extended Data Figure 1 A(V) map.

The estimated A(V) map (with A(V) colour coded, see key), with contours of Na D EW >3.5 Å from Fig. 1d. The spatial overlap between regions of high extinction and the Na D EW absorption confirms that there is cool material in the foreground of Akira. Here and below, axes show offset in arcsec from map centre, marked with a cross.

Extended Data Figure 2 Na D line-of-sight measurement.

ac, The spectrum around the Na D doublet at λ = 5,890, 5,896 Å and best-fit stellar continuum. The two vertical lines mark the locations of the Na D doublet. df, The residual of the spectrum and stellar continuum. Considering only the wavelength range enclosed by the green region, we calculate the residual-weighted central wavelengths of these Na D doublets, which is marked by the dashed grey vertical line and blue vertical lines. The dashed grey vertical represents the reference Na D centroid while the blue vertical lines represent the observed Na D centroid from the two spaxels of Akira. See Methods for details. The horizontal dashed line is a reference point and the Δv in e and f represents the residual-weighted velocities. Data in a from ref. 43 with permission.

Extended Data Figure 3 Merger simulation.

ad, Evolution of the stars from t = 0 Gyr to t = 0.56 Gyr; each panel is 90 × 90 kpc. e, Composite image of stars and gas at t = 0.56 Gyr; this panel is also 90 × 90 kpc. f, The SDSS r image of Akira and Tetsuo.

Extended Data Figure 4 Vrms maps.

a, Observed Vrms map (key at top shows colour coded Vrms). b, Predicted Vrms map, assuming i = 46°. c, Predicted Vrms map, assuming i = 90°.

PowerPoint slides

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Cheung, E., Bundy, K., Cappellari, M. et al. Suppressing star formation in quiescent galaxies with supermassive black hole winds. Nature 533, 504–508 (2016).

Download citation

Further reading


By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing