Synthetic Landau levels for photons


Synthetic photonic materials are an emerging platform for exploring the interface between microscopic quantum dynamics and macroscopic material properties1,2,3,4,5. Photons experiencing a Lorentz force develop handedness, providing opportunities to study quantum Hall physics and topological quantum science6,7,8. Here we present an experimental realization of a magnetic field for continuum photons. We trap optical photons in a multimode ring resonator to make a two-dimensional gas of massive bosons, and then employ a non-planar geometry to induce an image rotation on each round-trip9. This results in photonic Coriolis/Lorentz and centrifugal forces and so realizes the Fock–Darwin Hamiltonian for photons in a magnetic field and harmonic trap10. Using spatial- and energy-resolved spectroscopy, we track the resulting photonic eigenstates as radial trapping is reduced, finally observing a photonic Landau level at degeneracy. To circumvent the challenge of trap instability at the centrifugal limit10,11, we constrain the photons to move on a cone. Spectroscopic probes demonstrate flat space (zero curvature) away from the cone tip. At the cone tip, we observe that spatial curvature increases the local density of states, and we measure fractional state number excess consistent with the Wen–Zee theory, providing an experimental test of this theory of electrons in both a magnetic field and curved space12,13,14,15. This work opens the door to exploration of the interplay of geometry and topology, and in conjunction with Rydberg electromagnetically induced transparency, enables studies of photonic fractional quantum Hall fluids16,17 and direct detection of anyons18,19.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Figure 1: Resonator structure and transverse manifold geometry.
Figure 2: Building a Landau level.
Figure 3: Photonic lowest Landau levels on a cone.


  1. 1

    Peyronel, T. et al. Quantum nonlinear optics with single photons enabled by strongly interacting atoms. Nature 488, 57–60 (2012)

    CAS  ADS  Article  Google Scholar 

  2. 2

    Gopalakrishnan, S., Lev, B. L. & Goldbart, P. M. Emergent crystallinity and frustration with Bose–Einstein condensates in multimode cavities. Nat. Phys. 5, 845–850 (2009)

    CAS  Article  Google Scholar 

  3. 3

    Baumann, K., Guerlin, C., Brennecke, F. & Esslinger, T. Dicke quantum phase transition with a superfluid gas in an optical cavity. Nature 464, 1301–1306 (2010)

    CAS  ADS  Article  Google Scholar 

  4. 4

    Cooper, N. R. & Dalibard, J. Reaching fractional quantum Hall states with optical flux lattices. Phys. Rev. Lett. 110, 185301 (2013)

    ADS  Article  Google Scholar 

  5. 5

    Carusotto, I. & Ciuti, C. Quantum fluids of light. Rev. Mod. Phys. 85, 299–366 (2013)

    ADS  Article  Google Scholar 

  6. 6

    Jia, N., Owens, C., Sommer, A., Schuster, D. & Simon, J. Time- and site-resolved dynamics in a topological circuit. Phys. Rev. X 5, 021031 (2015)

    Google Scholar 

  7. 7

    Otterbach, J., Ruseckas, J., Unanyan, R. G., Juzeliūnas, G. & Fleischhauer, M. Effective magnetic fields for stationary light. Phys. Rev. Lett. 104, 033903 (2010)

    CAS  ADS  Article  Google Scholar 

  8. 8

    Wang, Z., Chong, Y., Joannopoulos, J. D. & Soljacic, M. Observation of unidirectional backscattering-immune topological electromagnetic states. Nature 461, 772–775 (2009)

    CAS  ADS  Article  Google Scholar 

  9. 9

    Yuan, J. et al. Nonplanar ring resonator modes: generalized Gaussian beams. Appl. Opt. 46, 2980–2989 (2007)

    ADS  Article  Google Scholar 

  10. 10

    Cooper, N. R. Rapidly rotating atomic gases. Adv. Phys. 57, 539–616 (2008)

    CAS  ADS  Article  Google Scholar 

  11. 11

    Bloch, I., Dalibard, J. & Zwerger, W. Many-body physics with ultracold gases. Rev. Mod. Phys. 80, 885–964 (2008)

    CAS  ADS  Article  Google Scholar 

  12. 12

    Wen, X. G. & Zee, A. Shift and spin vector: new topological quantum numbers for the Hall fluids. Phys. Rev. Lett. 69, 953–956 (1992)

    CAS  ADS  Article  Google Scholar 

  13. 13

    Hoyos, C. & Son, D. T. Hall viscosity and electromagnetic response. Phys. Rev. Lett. 108, 066805 (2012)

    ADS  Article  Google Scholar 

  14. 14

    Abanov, A. G. & Gromov, A. Electromagnetic and gravitational responses of two-dimensional noninteracting electrons in a background magnetic field. Phys. Rev. B 90, 014435 (2014)

    ADS  Article  Google Scholar 

  15. 15

    Can, T., Laskin, M. & Wiegmann, P. Fractional quantum Hall effect in a curved space: gravitational anomaly and electromagnetic response. Phys. Rev. Lett. 113, 046803 (2014)

    CAS  ADS  Article  Google Scholar 

  16. 16

    Sommer, A., Büchler, H. P. & Simon, J. Quantum crystals and Laughlin droplets of cavity Rydberg polaritons. Preprint at (2015)

  17. 17

    Umucalılar, R. O., Wouters, M. & Carusotto, I. Probing few-particle Laughlin states of photons via correlation measurements. Phys. Rev. A 89, 023803 (2014)

    ADS  Article  Google Scholar 

  18. 18

    Paredes, B., Fedichev, P., Cirac, J. I. & Zoller, P. 1/2-Anyons in small atomic Bose-Einstein condensates. Phys. Rev. Lett. 87, 010402 (2001)

    CAS  ADS  Article  Google Scholar 

  19. 19

    Umucalılar, R. O. & Carusotto, I. Many-body braiding phases in a rotating strongly correlated photon gas. Phys. Lett. A 377, 2074–2078 (2013)

    ADS  MathSciNet  Article  Google Scholar 

  20. 20

    Nayak, C., Simon, S. H., Stern, A., Freedman, M. & Das Sarma, S. Non-Abelian anyons and topological quantum computation. Rev. Mod. Phys. 80, 1083–1159 (2008)

    CAS  ADS  MathSciNet  Article  Google Scholar 

  21. 21

    Wang, Z., Chong, Y. D., Joannopoulos, J. D. & Soljačić, M. Reflection-free one-way edge modes in a gyromagnetic photonic crystal. Phys. Rev. Lett. 100, (2008)

  22. 22

    Rechtsman, M. C. et al. Photonic Floquet topological insulators. Nature 496, 196–200 (2013)

    CAS  ADS  Article  Google Scholar 

  23. 23

    Hafezi, M., Mittal, S., Fan, J., Migdall, A. & Taylor, J. M. Imaging topological edge states in silicon photonics. Nat. Photon. 7, 1001–1005 (2013)

    CAS  ADS  Article  Google Scholar 

  24. 24

    Rechtsman, M. C. et al. Strain-induced pseudomagnetic field and photonic Landau levels in dielectric structures. Nat. Photon. 7, 153–158 (2013)

    CAS  ADS  Article  Google Scholar 

  25. 25

    Karzig, T., Bardyn, C.-E., Lindner, N. H. & Refael, G. Topological polaritons. Phys. Rev. X 5, 031001 (2015)

    Google Scholar 

  26. 26

    Longhi, S. Synthetic gauge fields for light beams in optical resonators. Opt. Lett. 40, 2941–2944 (2015)

    CAS  ADS  Article  Google Scholar 

  27. 27

    Klaers, J., Schmitt, J., Vewinger, F. & Weitz, M. Bose-Einstein condensation of photons in an optical microcavity. Nature 468, 545–548 (2010)

    CAS  ADS  Article  Google Scholar 

  28. 28

    Sommer, A. & Simon, J. Engineering photonic Floquet Hamiltonians through Fabry–Pérot resonators. New J. Phys. 18, 035008 (2016)

    ADS  Article  Google Scholar 

  29. 29

    Schweikhard, V., Coddington, I., Engels, P., Mogendorff, V. P. & Cornell, E. A. Rapidly rotating Bose-Einstein condensates in and near the lowest Landau level. Phys. Rev. Lett. 92, 040404 (2004)

    CAS  ADS  Article  Google Scholar 

  30. 30

    Read, N. Non-Abelian adiabatic statistics and Hall viscosity in quantum Hall states and p x + ip y paired superfluids. Phys. Rev. B 79, 045308 (2009)

    ADS  Article  Google Scholar 

Download references


We acknowledge conversations with I. Carusotto, M. Levin and P. Wiegmann. This work was supported by DOE, DARPA and AFOSR. A.G. acknowledges the support of the Kadanoff Center for Theoretical Physics. A.R. acknowledges support from ARO through an NDSEG fellowship.

Author information




The experiment was designed and built by N.S., J.S., A.R. and A.S. Measurement and analysis of the data was performed by N.S. Theoretical development and interpretation of results were performed by J.S., A.S., N.S. and A.G. All authors contributed to the manuscript.

Corresponding author

Correspondence to Jonathan Simon.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

This file contains Supplementary Text and Data, Supplementary Figures 1-3 and additional references. (PDF 1769 kb)

PowerPoint slides

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Schine, N., Ryou, A., Gromov, A. et al. Synthetic Landau levels for photons. Nature 534, 671–675 (2016).

Download citation

Further reading


By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.


Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing