Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Site-selective and stereoselective functionalization of unactivated C–H bonds

Abstract

The laboratory synthesis of complex organic molecules relies heavily on the introduction and manipulation of functional groups, such as carbon–oxygen or carbon–halogen bonds; carbon–hydrogen bonds are far less reactive and harder to functionalize selectively. The idea of C–H functionalization, in which C–H bonds are modified at will instead of the functional groups, represents a paradigm shift in the standard logic of organic synthesis1,2,3. For this approach to be generally useful, effective strategies for site-selective C–H functionalization need to be developed. The most practical solutions to the site-selectivity problem rely on either intramolecular reactions4 or the use of directing groups within the substrate5,6,7,8. A challenging, but potentially more flexible approach, would be to use catalyst control to determine which site in a particular substrate would be functionalized9,10,11. Here we describe the use of dirhodium catalysts to achieve highly site-selective, diastereoselective and enantioselective C–H functionalization of n-alkanes and terminally substituted n-alkyl compounds. The reactions proceed in high yield, and functional groups such as halides, silanes and esters are compatible with this chemistry. These studies demonstrate that high site selectivity is possible in C–H functionalization reactions without the need for a directing or anchoring group present in the molecule.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Site-selective C–H functionalization by donor/acceptor carbenes.
Figure 2: Synthesis of TPCP carboxylate dirhodium catalysts.
Figure 3: Catalyst optimization studies.
Figure 4: C–H functionalization of alkanes and substituted n-alkanes.
Figure 5: Structural information about the dirhodium catalysts.

Similar content being viewed by others

Accession codes

Data deposits

The crystal data have been deposited in the The Cambridge Crystallographic Data Centre (http://www.ccdc.cam.ac.uk) under accession number 1445448.

References

  1. Yamaguchi, J., Yamaguchi, A. D. & Itami, K. C–H bond functionalization: emerging synthetic tools for natural products and pharmaceuticals. Angew. Chem. Int. Ed. 51, 8960–9009 (2012)

    Article  CAS  Google Scholar 

  2. Gutekunst, W. R. & Baran, P. S. C–H functionalization logic in total synthesis. Chem. Soc. Rev. 40, 1976–1991 (2011)

    Article  CAS  Google Scholar 

  3. Hartwig, J. F. Evolution of C–H bond functionalization from methane to methodology. J. Am. Chem. Soc. 138, 2–24 (2016)

    Article  CAS  Google Scholar 

  4. Doyle, M. P., Duffy, R., Ratnikov, M. & Zhou, L. Catalytic carbene insertion into C–H bonds. Chem. Rev. 110, 704–724 (2010)

    Article  CAS  Google Scholar 

  5. Zhang, F. & Spring, D. R. Arene C–H functionalisation using a removable/modifiable or a traceless directing group strategy. Chem. Soc. Rev. 43, 6906–6919 (2014)

    Article  CAS  Google Scholar 

  6. Topczewski, J. J. & Sanford, M. S. Carbon–hydrogen (C–H) bond activation at PdIV: a frontier in C–H functionalization catalysis. Chem. Sci. 6, 70–76 (2015)

    Article  CAS  Google Scholar 

  7. Engle, K. M., Mei, T.-S., Wasa, M. & Yu, J.-Q. Weak coordination as a powerful means for developing broadly useful C–H functionalization reactions. Acc. Chem. Res. 45, 788–802 (2012)

    Article  CAS  Google Scholar 

  8. Colby, D. A., Bergman, R. G. & Ellman, J. A. Rhodium-catalyzed C–C bond formation via heteroatom-directed C–H bond activation. Chem. Rev. 110, 624–655 (2010)

    Article  CAS  Google Scholar 

  9. Caballero, A. et al. Catalytic functionalization of low reactive C(sp3)-H and C(sp2)-H bonds of alkanes and arenes by carbene transfer from diazo compounds. Dalton Trans. 44, 20295–20307 (2015)

    Article  CAS  Google Scholar 

  10. Kuhl, N., Hopkinson, M. N., Wencel-Delord, J. & Glorius, F. Beyond directing groups: transition-metal-catalyzed C–H activation of simple arenes. Angew. Chem. Int. Ed. 51, 10236–10254 (2012)

    Article  CAS  Google Scholar 

  11. Mkhalid, I. A. I., Barnard, J. H., Marder, T. B., Murphy, J. M. & Hartwig, J. F. C–H activation for the construction of C–B bonds. Chem. Rev. 110, 890–931 (2010)

    Article  CAS  Google Scholar 

  12. Qin, C. M. & Davies, H. M. L. Role of sterically demanding chiral dirhodium catalysts in site-selective C–H functionalization of activated primary C–H bonds. J. Am. Chem. Soc. 136, 9792–9796 (2014)

    Article  CAS  Google Scholar 

  13. Guptill, D. M. & Davies, H. M. L. 2,2,2-Trichloroethyl aryldiazoacetates as robust reagents for the enantioselective C–H functionalization of methyl ethers. J. Am. Chem. Soc. 136, 17718–17721 (2014)

    Article  CAS  Google Scholar 

  14. Davies, H. M. L. & Morton, D. Guiding principles for site selective and stereoselective intermolecular C–H functionalization by donor/acceptor rhodium carbenes. Chem. Soc. Rev. 40, 1857–1869 (2011)

    Article  CAS  Google Scholar 

  15. Demonceau, A., Noels, A. F., Hubert, A. J. & Teyssie, P. Transition-metal-catalyzed reactions of diazoesters—insertion into C–H bonds of parafins by carbenoids. J. Chem. Soc. Chem. Commun. 14, 688–689 (1981)

    Article  Google Scholar 

  16. Davies, H. M. L., Hansen, T. & Churchill, M. R. Catalytic asymmetric C–H activation of alkanes and tetrahydrofuran. J. Am. Chem. Soc. 122, 3063–3070 (2000)

    Article  CAS  Google Scholar 

  17. Thu, H.-Y. et al. Highly selective metal catalysts for intermolecular carbenoid insertion into primary C–H bonds and enantioselective C–C bond formation. Angew. Chem. Int. Ed. 47, 9747–9751 (2008)

    Article  CAS  Google Scholar 

  18. Hansen, J. & Davies, H. M. L. High symmetry dirhodium(II) paddlewheel complexes as chiral catalysts. Coord. Chem. Rev. 252, 545–555 (2008)

    Article  CAS  Google Scholar 

  19. Davies, H. M. L., Bruzinski, P. R., Lake, D. H., Kong, N. & Fall, M. J. Asymmetric cyclopropanations by rhodium(II) N-(arylsulfonyl)prolinate catalyzed decomposition of vinyldiazomethanes in the presence of alkenes. Practical enantioselective synthesis of the four stereoisomers of 2-phenylcyclopropan-1-amino acid. J. Am. Chem. Soc. 118, 6897–6907 (1996)

    Article  CAS  Google Scholar 

  20. Qin, C. M. et al. D2-symmetric dirhodium catalyst derived from a 1,2,2-triarylcyclopropanecarboxylate ligand: design, synthesis and application. J. Am. Chem. Soc. 133, 19198–19204 (2011)

    Article  CAS  Google Scholar 

  21. DeAngelis, A., Dmitrenko, O., Yap, G. P. A. & Fox, J. M. Chiral crown conformation of Rh2(S-PTTL)4: Enantioselective cyclopropanation with α-alkyl-α-diazoesters. J. Am. Chem. Soc. 131, 7230–7231 (2009)

    Article  CAS  Google Scholar 

  22. Lindsay, V. N. G., Lin, W. & Charette, A. B. Experimental evidence for the all-up reactive conformation of chiral rhodium(II) carboxylate catalysts: enantioselective synthesis of cis-cyclopropane α-amino acids. J. Am. Chem. Soc. 131, 16383–16385 (2009)

    Article  CAS  Google Scholar 

  23. Hansen, J., Autschbach, J. & Davies, H. M. L. Computational study on the selectivity of donor/acceptor-substituted rhodium carbenoids. J. Org. Chem. 74, 6555–6563 (2009)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Financial support was provided by the National Science Foundation (NSF) through the CCI Center for Selective C–H Functionalization (CHE-1205646). We thank Novartis and AbbVie for supporting our research in C–H functionalization. We thank D. Guptill for conducting some preliminary studies on this project. D.G.M. gratefully acknowledges an NSF MRI-R2 grant (CHE-0958205) and the use of the resources of the Cherry Emerson Center for Scientific Computation.

Author information

Authors and Affiliations

Authors

Contributions

K.L. performed and analysed the majority of the synthetic experiments. S.N. prepared the first meta-disubstituted catalyst, D.G.M. conducted the computational studies and J.B. conducted the X-ray crystallographic studies. K.L. and H.M.L.D. designed the synthetic experiments and prepared the manuscript.

Corresponding author

Correspondence to Huw M. L. Davies.

Ethics declarations

Competing interests

H.M.L.D. is a named inventor on a patent entitled “Dirhodium Catalyst Compositions and Synthetic Processes Related Thereto” (US 8,975,428, issued 10 March 2015). The other authors have no competing financial interests.

Supplementary information

Supplementary Information

This file contains Supplementary Text and Data – see contents page for details. (PDF 11804 kb)

PowerPoint slides

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liao, K., Negretti, S., Musaev, D. et al. Site-selective and stereoselective functionalization of unactivated C–H bonds. Nature 533, 230–234 (2016). https://doi.org/10.1038/nature17651

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nature17651

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing