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            Abstract
For goal-directed behaviour it is critical that we can both select the appropriate action and learn to modify the underlying movements (for example, the pitch of a note or velocity of a reach) to improve outcomes. The basal ganglia are a critical nexus where circuits necessary for the production of behaviour, such as the neocortex and thalamus, are integrated with reward signalling1 to reinforce successful, purposive actions2. The dorsal striatum, a major input structure of basal ganglia, is composed of two opponent pathways, direct and indirect, thought to select actions that elicit positive outcomes and suppress actions that do not, respectively3,4. Activity-dependent plasticity modulated by reward is thought to be sufficient for selecting actions in the striatum5,6. Although perturbations of basal ganglia function produce profound changes in movement7, it remains unknown whether activity-dependent plasticity is sufficient to produce learned changes in movement kinematics, such as velocity. Here we use cell-type-specific stimulation in mice delivered in closed loop during movement to demonstrate that activity in either the direct or indirect pathway is sufficient to produce specific and sustained increases or decreases in velocity, without affecting action selection or motivation. These behavioural changes were a form of learning that accumulated over trials, persisted after the cessation of stimulation, and were abolished in the presence of dopamine antagonists. Our results reveal that the direct and indirect pathways can each bidirectionally control movement velocity, demonstrating unprecedented specificity and flexibility in the control of volition by the basal ganglia.
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                    Figure 1: Paradigm for closed-loop stimulation in dorsomedial striatum.[image: ]


Figure 2: Closed-loop stimulation produces opponent, bidirectional control of movement velocity.[image: ]


Figure 3: Changes in velocity are consistent with dopamine-dependent reinforcement learning.[image: ]


Figure 4: Corticostriatal circuit model implements MeSH rule and experimental validation.[image: ]
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Extended data figures and tables

Extended Data Figure 1 Anatomical localization of stimulated neurons and their corticostriatal inputs.
a, Schematic showing the histological reconstruction of optic fibre endpoints in dMSN (cyan) and iMSN (red) mice. Hemispheric segregation for display purposes only; actual implants were randomized left and right. b, Location of retrobead tracer injection just below the coordinates of fibre implant terminus. c, Location of the labelled projection neurons innervating the retrobead injection site corresponding to the rostral forelimb area (RFA, orange) and caudal forelimb area (CFA, yellow). d, Results of simulation of light intensity and spread through the brain based upon the model of Stujenske et al.39. Light intensity drops below 10% peak intensity 285â€‰Î¼m below the fibre. At this depth the lateral fall-off is a drop to 1% peak intensity 250â€‰Î¼m. Contour lines for 10% intensity and 1% intensity are overlaid in white and grey, respectively. e, Average photostimulation-evoked activity of individual neurons (each rowâ€‰=â€‰1 neuron) sorted by electrode shank. We observed minimal fidelity in the light-evoked responses of neurons on the farthest shank consistent with the predicted fall-off in light intensity from simulations. Blue dashes at top identify timing of laser pulses. Robust entrainment of spiking to photostimulation was also observed in vitro (Extended Data Fig. 7).


Extended Data Figure 2 Selective stimulation of MSNs produces changes in peak velocity.
a, Density plot of movement trajectories showing the percentage of movements that passed through a given amplitude throughout time, aligned to movement onset. Particularly in the magnified plot on the right, we can see that very few movement trajectories passed near the central 0.2â€‰cm within the first 100â€‰ms. b, Peak velocity distributions for sham and stimulation data sets for dMSN stimulation (blue, left column), and iMSN stimulation (red, middle column). Top row shows complete distributions across animals. Note that no particular part of the distribution is pronounced following stimulation. Bottom row shows means for all experimental sessions by animal. Animal number is for indexing purposes only. Most experiments were carried out concurrently across animals. The right column shows the contrast ratio (difference divided by sum) for dMSN and iMSN stimulation effects (blue and red, respectively). These data show a steady mean shift in the data; for instance, iMSN stimulation (red) is positive for velocities slower than the sham (control) mean (an increase in frequency), and is negative for velocity values greater than the sham mean (a decrease in frequency). We have curtailed the contrast ratio plot where too few values existed to achieve reliable estimates (55â€‰cmâ€‰sâˆ’1). c, Autocorrelation of movement velocities for dMSN stim (blue), iMSN (red), and sham (black) data. d, e, Same analyses as b, c, but for those sessions in which stimulation occurred on the slower, lower third of movement velocities.


Extended Data Figure 3 Trained animals can adjust amplitude to changing task requirements.
a, Reach amplitudes from a sample of seven sessions in two mice in which the eccentricity of the threshold to receive reward was suddenly increased at random. Green field identifies reaches performed with the increased amplitude threshold. Shaded area represents standard error of the mean. b, Success rate before (black) and after (green) the jump in amplitude threshold. c, Distribution of reach amplitudes across sessions for pre- (green) and post- (black) amplitude threshold jump. These data indicate that the mean amplitude was not saturated and suggest that behaviour remains outcome-dependent (that is, goal-directed).


Extended Data Figure 4 Variance of movement velocity does not change throughout a session.
Each session was z-scored and the standard deviation for each movement number is plotted for dMSN (cyan) and iMSN (red) stimulation.


Extended Data Figure 5 Non-selective stimulation does not affect motor control or initiation.
a, b, â€˜All-stimâ€™ (a; 15 stimulation and 17 sham sessions from 4 dMSN mice; 17 stimulation and 20 sham sessions from 4 iMSN mice) and â€˜random stimâ€™ (b; 11 stimulation and 15 sham dMSN sessions from 3 dMSN mice, 8 stimulation and 12 sham sessions from 3 iMSN mice) summary data showing (top) the mean velocity as a function of movement number for dMSN (cyan) and iMSN (red) stimulation sessions and (bottom) histograms of the inter-move interval (IMI; left) and lick rate (LR; right). Shaded area indicates standard error of the mean. We found no differences between sham (black lines) and stimulation (coloured lines) sessions for either dMSN stimulation (cyan) or iMSN stimulation (red). c, Plot of average trajectory position aligned to stimulation onset for random dMSN (top) and iMSN stimulation (middle) for stimulation (coloured) and sham (black) sessions (in sham sessions, timing was randomly chosen, but no stimulation was given). Stimulation did not systematically induce forelimb movement. For reference, the bottom trace displays closed-loop dMSNs aligned to stimulation onset. Grey field represents the 450â€‰ms stimulation period.


Extended Data Figure 6 A corticostriatal circuit model that implements the MeSH learning rule.
a, In the left panel, we present a schematic of the corticostriatal pathway consistent with known anatomical data1. Descending cortical outputs, largely from layer V of the neocortex, project subcortically and intracortically elaborating axon collaterals onto direct (blue) and indirect (red) MSNs in the dorsal striatum. By typical convention we assume that dMSNs have a net positive effect on behaviour (increase in velocity in this case) and iMSNs have a net inhibitory effect (decrease in velocity). These pathways are combined at the basal ganglia output nucleus (substantia nigra pars reticulata; not shown) and then combined with cortical drive to produce the net movement velocity. The model assumes that both dMSNs and iMSNs are positively correlated with cortical activity and with movement velocity. We assume a monotonic relationship between cortical activity and movement velocity20. The model is initialized at a presumptive steady-state in which weights between cortical inputs and dMSN and iMSN units are noisy, but distributed around 0.5 and bounded [0,1]. Most simulations were performed with 100 cortical units and 250 dMSNs and iMSNs each. Under all conditions weights are subject to updating according to a balanced plasticity rule (inset) in which inactive units are subject to depression and active units are subject to potentiation. All synapses drift back towards a mean of 0.5 thereby implementing a homeostatic set point to the weight distribution. Finally, photostimulation is assumed to enhance (90% increase) the magnitude of both depression and potentiation on stimulated trials in the stimulated population. Random sets of cortical inputs are assumed to be active on any given reach and are drawn from a gamma (shape parameters: 8, 63) distribution that gives a distribution of velocities similar to that observed experimentally. Further details of the model are provided in the Methods. b, Example simulations of 100 trials (first 50 receive stimulation according to conditions described in legend followed by 50 unstimulated recovery trials). Curves reflect averages and standard errors of 100 repetitions of the simulated condition. Other conventions as in main figures. c, Schematic of dendrite of MSN containing synapses active during limb movements. Synaptic plasticity enhanced by stimulation (inset in panel a) produces a net bias in synaptic weights when delivered in closed-loop. This bias can become uniform by permuting the active synapses on each simulated trial.


Extended Data Figure 7 D1+ and D2+ MSNs can follow repetitive stimulus trains of ~20â€‰Hz photostimulation in vitro.
Example MSNs recorded in vitro in brain slices containing the DMS. Upper row are two example D1+ dMSNs recorded from DMS of a Drd1a-Cre::Ai32 mouse. Lower row are two example D2+ dMSN recorded from DMS of a Drd2a-Cre::Ai32 mouse. 3 example traces shown from each. Spiking is evoked by increasing current injection (traces selected for approximately similar evoked spiking rate) and ~500â€‰ms later by a train of 5 pulses of blue light of increasing duty cycle. All cells recorded were able to follow rapid phasic stimulation and action potentials were reliably evoked on every stimulus of these 20â€‰Hz trains (approximately similar to the stimulus trains used in stimulation experiments described in the text). Examples were selected from seven neurons from three D1+ animals, and four neurons from three D2+ animals that were recorded for this particular stimulation design.


Extended Data Figure 8 Characterization of movement onset and reach initiation threshold crossing time.
A sample reach from a sham block of 50 is shown, with eccentricity in black and velocity in blue (in right panel). The reach start is identified with the greed dot, the threshold crossing, 9â€‰ms later when the reach eccentricity surpassed 0.1â€‰cm, is identified with the magenta dot. The beginning of the reach (green) was assessed offline for each reach and was determined to be the first time point, sampled at 1â€‰kHz, constituting the increasing velocity associated with that reach.


Extended Data Table 1 Lick and move rates from each animal for sham upper third stimulation sessionsFull size table
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dMSN upper third stimulation
Infrared video recording of a Drd1a-cre::Ai32 mouse performing task while head-fixed during stimulation session for upper 1/3 stimulation protocols. Black line indicates eccentricity. Green line indicates outward velocity. Blue bar indicates period of stimulation. Video angle may cause joystick to appear closer to mouse platform than it is (2.7cm away). (MOV 20331 kb)


iMSN upper third stimulation
Infrared video recording of a Drd2-cre::Ai32 mouse performing task while head-fixed during stimulation session for upper 1/3 stimulation protocols. Black line indicates eccentricity. Green line indicates outward velocity. Blue bar indicates period of stimulation. (MOV 22144 kb)


dMSN lower third stimulation
Infrared video recording of a Drd1a-cre::Ai32 mouse performing task while head-fixed during stimulation session for lower 1/3 stimulation protocols. Black line indicates eccentricity. Green line indicates outward velocity. Blue bar indicates period of stimulation.  (MOV 20353 kb)


iMSN lower third stimulation
Infrared video recording of a Drd2-cre::Ai32 mouse performing task while head-fixed during stimulation session for lower 1/3 stimulation protocols. Black line indicates eccentricity. Green line indicates outward velocity. Blue bar indicates period of stimulation.  (MOV 21403 kb)
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        Editorial Summary
Selection and modification of reward-seeking actions
Activity in the direct and indirect basal ganglia pathways, respectively, promotes actions associated with reward and suppresses actions that do not lead to reward. Eric Yttri and Joshua Dudman now show that in addition to their role in selecting the action that will lead to reward, these pathways are also involved in the modification of the velocity of movements required to obtain the reward. Through optogenetic stimulation of the direct or indirect pathway during voluntary movement, the authors show that each pathway can produce both a learned increase and a learned decrease in the speed of specific movements, without affecting motivation, and in a dopamine-dependent manner. These findings demonstrate that each pathway can reinforce the speed of movements that underlie reward-seeking actions.
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