Dynamics from noisy data with extreme timing uncertainty

Abstract

Imperfect knowledge of the times at which ‘snapshots’ of a system are recorded degrades our ability to recover dynamical information, and can scramble the sequence of events. In X-ray free-electron lasers, for example, the uncertainty—the so-called timing jitter—between the arrival of an optical trigger (‘pump’) pulse and a probing X-ray pulse can exceed the length of the X-ray pulse by up to two orders of magnitude1, marring the otherwise precise time-resolution capabilities of this class of instruments. The widespread notion that little dynamical information is available on timescales shorter than the timing uncertainty has led to various hardware schemes to reduce timing uncertainty2,3,4. These schemes are expensive, tend to be specific to one experimental approach and cannot be used when the record was created under ill-defined or uncontrolled conditions such as during geological events. Here we present a data-analytical approach, based on singular-value decomposition and nonlinear Laplacian spectral analysis5,6,7, that can recover the history and dynamics of a system from a dense collection of noisy snapshots spanning a sufficiently large multiple of the timing uncertainty. The power of the algorithm is demonstrated by extracting the underlying dynamics on the few-femtosecond timescale from noisy experimental X-ray free-electron laser data recorded with 300-femtosecond timing uncertainty1. Using a noisy dataset from a pump-probe experiment on the Coulomb explosion of nitrogen molecules, our analysis reveals vibrational wave-packets consisting of components with periods as short as 15 femtoseconds, as well as more rapid changes, which have yet to be fully explored. Our approach can potentially be applied whenever dynamical or historical information is tainted by timing uncertainty.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Figure 1: Coulomb explosion of N2, singular modes 1 and 2.
Figure 2: Coulomb explosion of N2, singular modes 3 and 4.
Figure 3: Infrared/X-ray overlap region as revealed by singular modes 3 and 4.
Figure 4: Vibrational wave packets, singular mode 4, X-ray-first region.

References

  1. 1

    Glownia, J. M. et al. Time-resolved pump-probe experiments at the LCLS. Opt. Express 18, 17620–17630 (2010)

    CAS  ADS  Article  Google Scholar 

  2. 2

    Gahl, C. et al. A femtosecond X-ray/optical cross-correlator. Nature Photon. 2, 165–169 (2008)

    CAS  ADS  Article  Google Scholar 

  3. 3

    Löhl, F. et al. Electron bunch timing with femtosecond precision in a superconducting free-electron laser. Phys. Rev. Lett. 104, 144801 (2010)

    ADS  Article  Google Scholar 

  4. 4

    Harmand, M. et al. Achieving few-femtosecond time-sorting at hard X-ray free-electron lasers. Nature Photon. 7, 215–218 (2013)

    CAS  ADS  Article  Google Scholar 

  5. 5

    Coifman, R. R. et al. Geometric diffusions as a tool for harmonic analysis and structure definition of data: diffusion maps. Proc. Natl Acad. Sci. USA 102, 7426–7431 (2005)

    CAS  ADS  Article  Google Scholar 

  6. 6

    Giannakis, D. & Majda, A. J. Nonlinear Laplacian spectral analysis for time series with intermittency and low-frequency variability. Proc. Natl Acad. Sci. USA 109, 2222–2227 (2012)

    CAS  ADS  MathSciNet  Article  Google Scholar 

  7. 7

    Berry, T., Cressman, R., Gregurić-Ferenček, Z. & Sauer, T. Time-scale separation from diffusion-mapped delay coordinates. SIAM J. Appl. Dyn. Syst. 12, 618–649 (2013)

    MathSciNet  Article  Google Scholar 

  8. 8

    Aubry, N., Guyonnet, R. & Lima, R. Spatiotemporal analysis of complex signals: theory and applications. J. Stat. Phys. 64, 683–739 (1991)

    ADS  MathSciNet  Article  Google Scholar 

  9. 9

    Packard, N., Crutchfield, J., Farmer, J. & Shaw, R. Geometry from a time series. Phys. Rev. Lett. 45, 712–716 (1980)

    ADS  Article  Google Scholar 

  10. 10

    Takens, F. in Dynamical Systems and Turbulence, Warwick 1980 (eds Rand, D. A. & Young, L.-S. ) Vol. 898 Lecture Notes in Mathematics (eds Dold, A. & Eckmann, B. ) 366–381 (Springer, 1981)

  11. 11

    Sauer, T., Yorke, J. A. & Casdagli, M. Embedology. J. Stat. Phys. 65, 579–616 (1991)

    ADS  MathSciNet  Article  Google Scholar 

  12. 12

    Giannakis, D. & Majda, A. J. Comparing low-frequency and intermittent variability in comprehensive climate models through nonlinear Laplacian spectral analysis. Geophys. Res. Lett. 39, L10710 (2012)

    ADS  Google Scholar 

  13. 13

    Dashti, A. et al. Trajectories of the ribosome as a Brownian nanomachine. Proc. Natl Acad. Sci. USA 111, 17492–17497 (2014)

    CAS  ADS  Article  Google Scholar 

  14. 14

    Stark, J., Broomhead, D. S., Davies, M. E. & Huke, J. Delay embeddings for forces systems. II. Stochastic forcing. J. Nonlinear Sci. 13, 519–577 (2003)

    ADS  MathSciNet  Article  Google Scholar 

  15. 15

    Pellegrini, C. & Stohr, J. X-ray free-electron lasers—principles, properties and applications. Nucl. Instrum. Methods Phys. Res. A 500, 33–40 (2003)

    CAS  ADS  Article  Google Scholar 

  16. 16

    Stapelfeldt, H. & Seideman, T. Colloquium: aligning molecules with strong laser pulses. Rev. Mod. Phys. 75, 543–557 (2003)

    CAS  ADS  Article  Google Scholar 

  17. 17

    Rudenko, A. et al. Real-time observation of vibrational revival in the fastest molecular system. Chem. Phys. 329, 193–202 (2006)

    CAS  Article  Google Scholar 

  18. 18

    Coifman, R. R., Shkolnisky, Y., Sigworth, F. J. & Singer, A. Graph Laplacian tomography from unknown random projections. IEEE Trans. Image Process. 17, 1891–1899 (2008)

    ADS  MathSciNet  Article  Google Scholar 

  19. 19

    Schmidt, M. et al. Fragment-emission patterns from the Coulomb explosion of diatomic molecules in intense laser fields. Phys. Rev. A 60, 4706–4714 (1999)

    CAS  ADS  Article  Google Scholar 

  20. 20

    Voss, S. et al. High resolution kinetic energy release spectra and angular distributions from double ionization of nitrogen and oxygen by short laser pulses. J. Phys. B 37, 4239–4257 (2004)

    CAS  ADS  Article  Google Scholar 

  21. 21

    Pavičić, D., Lee, K. F., Rayner, D. M., Corkum, P. B. & Villeneuve, D. M. Direct measurement of the angular dependence of ionization for N2, O2, and CO2 in intense laser fields. Phys. Rev. Lett. 98, 243001 (2007)

    ADS  Article  Google Scholar 

  22. 22

    Guo, W., Zhu, J., Wang, B., Wang, Y. & Wang, L. Angular distributions of fragment ions of N2 in a femtosecond laser field. Phys. Rev. A 77, 033415 (2008)

    ADS  Article  Google Scholar 

  23. 23

    Eberhardt, W., Stohr, J., Feldhaus, J., Plummer, E. W. & Sette, F. Correlation between electron emission and fragmentation into ions following soft-X-ray excitation of the nitrogen molecule. Phys. Rev. Lett. 51, 2370–2373 (1983)

    CAS  ADS  Article  Google Scholar 

  24. 24

    Bocharova, I. A. et al. Time-resolved Coulomb-explosion imaging of nuclear wave-packet dynamics induced in diatomic molecules by intense few-cycle laser pulses. Phys. Rev. A 83, 013417 (2011)

    ADS  Article  Google Scholar 

  25. 25

    De, S. et al. Following dynamic nuclear wave packets in N2, O2, and CO with few-cycle infrared pulses. Phys. Rev. A 84, 043410 (2011)

    ADS  Article  Google Scholar 

  26. 26

    Timmers, H. et al. Coherent electron hole dynamics near a conical intersection. Phys. Rev. Lett. 113, 113003 (2014)

    ADS  Article  Google Scholar 

  27. 27

    Dawber, G. et al. Threshold photoelectrons coincidence spectroscopy of doubly-charged ions of nitrogen, carbon monoxide, nitric oxide and oxygen. J. Phys. B 27, 2191–2209 (1994)

    CAS  ADS  Article  Google Scholar 

  28. 28

    Meyer, K. et al. Noisy optical pulses enhance the temporal resolution of pump-probe spectroscopy. Phys. Rev. Lett. 108, 098302 (2012)

    ADS  Article  Google Scholar 

  29. 29

    Jerri, A. J. The Shannon sampling theorem—its various extensions and applications: a tutorial review. Proc. IEEE 65, 1565–1596 (1977)

    ADS  Article  Google Scholar 

Download references

Acknowledgements

We thank P. Bucksbaum, J. M. Glownia and A. Natan for experimental data and comments on an earlier version of the manuscript, and acknowledge discussions with A. Dashti, D. Giannakis, A. Hosseinizadeh, A. Rudenko, M. Schmidt and P. Schwander. The research conducted by A.O. and R.F. was supported by the US Department of Energy, Office of Science, Basic Energy Sciences under award DE-SC0002164 (algorithm design and development, and data analysis), and by the US National Science Foundation under awards STC 1231306 (numerical trial models) and 1551489 (underlying analytical models). The research conducted by T.S. and S.R. was supported by the US Department of Energy, Office of Science, Basic Energy Sciences under award DE-FG02-04ER15612. T.S. thanks the Hamburg Centre for Ultrafast Imaging for a Mildred Dresselhaus Visiting Professorship.

Author information

Affiliations

Authors

Contributions

A.O. proposed the approach. R.F. and A.O. developed the algorithm architecture. R.F. implemented the algorithm and, together with A.O., obtained results from experimental data. A.O. and R.S. interpreted the experimental results. S.R. and T.S. performed simulations of impulsive molecular alignment and provided expert advice. A.M.H., O.V. and R.S. performed quantum-mechanical calculations.

Corresponding author

Correspondence to A. Ourmazd.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

This file contains Supplementary Text and Data, Supplementary Figures 1-10 and Supplementary References. (PDF 2080 kb)

PowerPoint slides

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Fung, R., Hanna, A., Vendrell, O. et al. Dynamics from noisy data with extreme timing uncertainty. Nature 532, 471–475 (2016). https://doi.org/10.1038/nature17627

Download citation

Further reading

  • Improving malicious URLs detection via feature engineering: Linear and nonlinear space transformation methods

    • Tie Li
    • , Gang Kou
    •  & Yi Peng

    Information Systems (2020)

  • Science in the age of machine learning

    • Abbas Ourmazd

    Nature Reviews Physics (2020)

  • Achieving accurate estimates of fetal gestational age and personalised predictions of fetal growth based on data from an international prospective cohort study: a population-based machine learning study

    • Russell Fung
    • , Jose Villar
    • , Ali Dashti
    • , Leila Cheikh Ismail
    • , Eleonora Staines-Urias
    • , Eric O Ohuma
    • , Laurent J Salomon
    • , Cesar G Victora
    • , Fernando C Barros
    • , Ann Lambert
    • , Maria Carvalho
    • , Yasmin A Jaffer
    • , J Alison Noble
    • , Michael G Gravett
    • , Manorama Purwar
    • , Ruyan Pang
    • , Enrico Bertino
    • , Shama Munim
    • , Aung Myat Min
    • , Rose McGready
    • , Shane A Norris
    • , Zulfiqar A Bhutta
    • , Stephen H Kennedy
    • , Aris T Papageorghiou
    • , Abbas Ourmazd
    • , S Norris
    • , SE Abbott
    • , A Abubakar
    • , J Acedo
    • , I Ahmed
    • , F Al-Aamri
    • , J Al-Abduwani
    • , J Al-Abri
    • , D Alam
    • , E Albernaz
    • , H Algren
    • , F Al-Habsi
    • , M Alija
    • , H Al-Jabri
    • , H Al-Lawatiya
    • , B Al-Rashidiya
    • , DG Altman
    • , WK Al-Zadjali
    • , HF Andersen
    • , L Aranzeta
    • , S Ash
    • , M Baricco
    • , FC Barros
    • , H Barsosio
    • , C Batiuk
    • , M Batra
    • , J Berkley
    • , E Bertino
    • , MK Bhan
    • , BA Bhat
    • , ZA Bhutta
    • , I Blakey
    • , S Bornemeier
    • , A Bradman
    • , M Buckle
    • , O Burnham
    • , F Burton
    • , A Capp
    • , VI Cararra
    • , R Carew
    • , VI Carrara
    • , AA Carter
    • , M Carvalho
    • , P Chamberlain
    • , Ismail L Cheikh
    • , L Cheikh Ismail
    • , A Choudhary
    • , S Choudhary
    • , WC Chumlea
    • , C Condon
    • , LA Corra
    • , C Cosgrove
    • , R Craik
    • , MF da Silveira
    • , D Danelon
    • , T de Wet
    • , E de Leon
    • , S Deshmukh
    • , G Deutsch
    • , J Dhami
    • , Nicola P Di
    • , M Dighe
    • , H Dolk
    • , M Domingues
    • , D Dongaonkar
    • , D Enquobahrie
    • , B Eskenazi
    • , F Farhi
    • , M Fernandes
    • , D Finkton
    • , S Fonseca
    • , IO Frederick
    • , M Frigerio
    • , P Gaglioti
    • , C Garza
    • , G Gilli
    • , P Gilli
    • , M Giolito
    • , F Giuliani
    • , J Golding
    • , MG Gravett
    • , SH Gu
    • , Y Guman
    • , YP He
    • , L Hoch
    • , S Hussein
    • , D Ibanez
    • , C Ioannou
    • , N Jacinta
    • , N Jackson
    • , YA Jaffer
    • , S Jaiswal
    • , JM Jimenez-Bustos
    • , FR Juangco
    • , L Juodvirsiene
    • , M Katz
    • , B Kemp
    • , S Kennedy
    • , M Ketkar
    • , V Khedikar
    • , M Kihara
    • , J Kilonzo
    • , C Kisiang'ani
    • , J Kizidio
    • , CL Knight
    • , HE Knight
    • , N Kunnawar
    • , A Laister
    • , A Lambert
    • , A Langer
    • , T Lephoto
    • , A Leston
    • , T Lewis
    • , H Liu
    • , S Lloyd
    • , P Lumbiganon
    • , S Macauley
    • , E Maggiora
    • , C Mahorkar
    • , M Mainwaring
    • , L Malgas
    • , A Matijasevich
    • , K McCormick
    • , R McGready
    • , R Miller
    • , A Min
    • , A Mitidieri
    • , V Mkrtychyan
    • , B Monyepote
    • , D Mota
    • , I Mulik
    • , S Munim
    • , D Muninzwa
    • , N Musee
    • , S Mwakio
    • , H Mwangudzah
    • , R Napolitano
    • , CR Newton
    • , V Ngami
    • , JA Noble
    • , S Norris
    • , T Norris
    • , F Nosten
    • , K Oas
    • , M Oberto
    • , L Occhi
    • , R Ochieng
    • , EO Ohuma
    • , E Olearo
    • , I Olivera
    • , MG Owende
    • , C Pace
    • , Y Pan
    • , RY Pang
    • , AT Papageorghiou
    • , B Patel
    • , V Paul
    • , W Paulsene
    • , F Puglia
    • , M Purwar
    • , V Rajan
    • , A Raza
    • , D Reade
    • , J Rivera
    • , DA Rocco
    • , F Roseman
    • , S Roseman
    • , C Rossi
    • , PM Rothwell
    • , I Rovelli
    • , K Saboo
    • , R Salam
    • , M Salim
    • , L Salomon
    • , Luna M Sanchez
    • , J Sande
    • , I Sarris
    • , S Savini
    • , IK Sclowitz
    • , A Seale
    • , J Shah
    • , M Sharps
    • , C Shembekar
    • , YJ Shen
    • , M Shorten
    • , F Signorile
    • , A Singh
    • , S Sohoni
    • , A Somani
    • , TK Sorensen
    • , A Soria- Frisch
    • , E Staines Urias
    • , A Stein
    • , W Stones
    • , V Taori
    • , K Tayade
    • , T Todros
    • , R Uauy
    • , A Varalda
    • , M Venkataraman
    • , C Victora
    • , J Villar
    • , S Vinayak
    • , S Waller
    • , L Walusuna
    • , JH Wang
    • , L Wang
    • , S Wanyonyi
    • , D Weatherall
    • , S Wiladphaingern
    • , A Wilkinson
    • , D Wilson
    • , MH Wu
    • , QQ Wu
    • , K Wulff
    • , D Yellappan
    • , Y Yuan
    • , S Zaidi
    • , G Zainab
    • , JJ Zhang
    •  & Y Zhang

    The Lancet Digital Health (2020)

  • Time-Resolved Macromolecular Crystallography at Pulsed X-ray Sources

    • Marius Schmidt

    International Journal of Molecular Sciences (2019)

  • Spatiotemporal Pattern Extraction by Spectral Analysis of Vector-Valued Observables

    • Dimitrios Giannakis
    • , Abbas Ourmazd
    • , Joanna Slawinska
    •  & Zhizhen Zhao

    Journal of Nonlinear Science (2019)

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.