Palaeoclimatic insights into forcing and response of monsoon rainfall

Abstract

Monsoons are the dominant seasonal mode of climate variability in the tropics and are critically important conveyors of atmospheric moisture and energy at a global scale. Predicting monsoons, which have profound impacts on regions that are collectively home to more than 70 per cent of Earth’s population, is a challenge that is difficult to overcome by relying on instrumental data from only the past few decades. Palaeoclimatic evidence of monsoon rainfall dynamics across different regions and timescales could help us to understand and predict the sensitivity and response of monsoons to various forcing mechanisms. This evidence suggests that monsoon systems exhibit substantial regional character.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Figure 1: Global monsoon domain (coloured regions) as defined by the seasonality (summer–winter difference) in rainfall.
Figure 2: Basic components of a summer monsoon and its driving forces.
Figure 3: Effects of obliquity and precession on tropical rainfall.
Figure 4: Monsoon variability at different timescales as evidenced by δ18O of cave stalagmites.
Figure 5: Monsoon rainfall anomalies during Heinrich stadial 1.

References

  1. 1

    Christensen, J. H. et al. in Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change (eds Stocker, T. F. et al.) Ch.14, 1217–1308 (Cambridge Univ. Press, 2013)

    Google Scholar 

  2. 2

    Flato, G. et al. in Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change (eds Stocker, T. F. et al.) Ch. 9, 741–866 (Cambridge Univ. Press, 2013)

    Google Scholar 

  3. 3

    Wang, B. et al. Northern Hemisphere summer monsoon intensified by mega-El Niño/southern oscillation and Atlantic multidecadal oscillation. Proc. Natl Acad. Sci. USA 110, 5347–5352 (2013)

    ADS  CAS  PubMed  Google Scholar 

  4. 4

    Lee, J.-Y. & Wang, B. Future change of global monsoon in the CMIP5. Clim. Dyn. 42, 101–119 (2014)

    Google Scholar 

  5. 5

    Sperber, K. R. et al. The Asian summer monsoon: an intercomparison of CMIP5 vs. CMIP3 simulations of the late 20th century. Clim. Dyn. 41, 2711–2744 (2013)

    Google Scholar 

  6. 6

    Wang, B. et al. Rethinking Indian monsoon rainfall prediction in the context of recent global warming. Nature Commun. 6, 7154 (2015)

    ADS  CAS  Google Scholar 

  7. 7

    Asharaf, S. & Ahrens, B. Indian summer monsoon rainfall processes in climate change scenarios. J. Clim. 28, 5414–5429 (2015)

    ADS  Google Scholar 

  8. 8

    Trenberth, K. E., Stepaniak, D. P. & Caron, J. M. The global monsoon as seen through the divergent atmospheric circulation. J. Clim. 13, 3969–3993 (2000)

    ADS  Google Scholar 

  9. 9

    Wang, B. & Ding, Q. Global monsoon: dominant mode of annual variation in the tropics. Dyn. Atmos. Oceans 44, 165–183 (2008). On the basis of instrumental records, this study introduces the monsoon precipitation index and defines the global monsoon precipitation domain.

    ADS  CAS  Google Scholar 

  10. 10

    Dallmeyer, A. et al. The evolution of sub-monsoon systems in the Afro-Asian monsoon region during the Holocene—comparison of different transient climate model simulations. Clim. Past 11, 305–326 (2015)

    Google Scholar 

  11. 11

    Caley, T. et al. Orbital timing of the Indian, East Asian and African boreal monsoons and the concept of a ‘global monsoon’. Quat. Sci. Rev. 30, 3705–3715 (2011)

    ADS  Google Scholar 

  12. 12

    Donohoe, A., Marshall, J., Ferreira, D. & McGee, D. The relationship between ITCZ location and cross-equatorial atmospheric heat transport: from the seasonal cycle to the Last Glacial Maximum. J. Clim. 26, 3597–3618 (2013)

    ADS  Google Scholar 

  13. 13

    Chen, X. & Zhou, T. Distinct effects of global mean warming and regional sea surface warming pattern on projected uncertainty in the South Asian summer monsoon. Geophys. Res. Lett. 42, 9433–9439 (2015)

    ADS  Google Scholar 

  14. 14

    Kutzbach, J. E. Monsoon climate of the early Holocene: climate experiment with the Earth’s orbital parameters for 9000 years ago. Science 214, 59–61 (1981); erratum 214, 606 (1981)

    ADS  CAS  PubMed  Google Scholar 

  15. 15

    Claussen, M. & Gayler, V. The greening of the Sahara during the mid-Holocene: results of an interactive atmosphere-biome model. Global Ecol. Biogeogr. Lett. 6, 369–377 (1997)

    Google Scholar 

  16. 16

    deMenocal, P. et al. Abrupt onset and termination of the African Humid Period: rapid climate responses to gradual insolation forcing. Quat. Sci. Rev. 19, 347–361 (2000)

    ADS  Google Scholar 

  17. 17

    Cheng, H., Sinha, A., Wang, X., Cruz, F. & Edwards, R. The Global Paleomonsoon as seen through speleothem records from Asia and the Americas. Clim. Dyn. 39, 1045–1062 (2012). This review compares the cave stalagmite records from various monsoon domains and introduces the concept of a global palaeo-monsoon.

    Google Scholar 

  18. 18

    Wang, P. X. et al. The global monsoon across timescales: coherent variability of regional monsoons. Clim. Past 10, 2007–2052 (2014)

    Google Scholar 

  19. 19

    Clemens, S. C., Prell, W. L. & Sun, Y. Orbital-scale timing and mechanisms driving late Pleistocene Indo-Asian summer monsoons: reinterpreting cave speleothem δ18O. Paleoceanography 25, PA4207 (2010)

    ADS  Google Scholar 

  20. 20

    Battisti, D. S., Ding, Q. & Roe, G. H. Coherent pan-Asian climatic and isotopic response to orbital forcing of tropical insolation. J. Geophys. Res. Atmospheres 119, 11997–12020 (2014)

    ADS  Google Scholar 

  21. 21

    Caley, T., Roche, D. M. & Renssen, H. Orbital Asian summer monsoon dynamics revealed using an isotope-enabled global climate model. Nature Commun. 5, 5371 (2014)

    ADS  CAS  Google Scholar 

  22. 22

    Chiang, J. C. H. et al. Role of seasonal transitions and westerly jets in East Asian paleoclimate. Quat. Sci. Rev. 108, 111–129 (2015)

    ADS  Google Scholar 

  23. 23

    Cai, Y. et al. Variability of stalagmite-inferred Indian monsoon precipitation over the past 252,000 y. Proc. Natl Acad. Sci. USA 112, 2954–2959 (2015). This paper explains differences in stalagmite records from the South Asian and East Asian monsoon domains by means of isotope-enabled model simulations.

    ADS  CAS  PubMed  Google Scholar 

  24. 24

    Merlis, T. M., Schneider, T., Bordoni, S. & Eisenman, I. The tropical precipitation response to orbital precession. J. Clim. 26, 2010–2021 (2013)

    ADS  Google Scholar 

  25. 25

    Bosmans, J. H. C., Drijfhout, S. S., Tuenter, E., Hilgen, F. J. & Lourens, L. J. Response of the North African summer monsoon to precession and obliquity forcings in the EC-Earth GCM. Clim. Dyn. 44, 279–297 (2015)

    Google Scholar 

  26. 26

    Bosmans, J. H. C., Hilgen, F. J., Tuenter, E. & Lourens, L. J. Obliquity forcing of low-latitude climate. Clim. Past 11, 1335–1346 (2015)

    Google Scholar 

  27. 27

    deMenocal, P. B. Plio-Pleistocene African climate. Science 270, 53–59 (1995)

    ADS  CAS  PubMed  Google Scholar 

  28. 28

    Molnar, P., Boos, W. R. & Battisti, D. S. Orographic controls on climate and paleoclimate of Asia: thermal and mechanical roles for the Tibetan plateau. Annu. Rev. Earth Planet. Sci. 38, 77–102 (2010). This study explains the difference between the South Asian (tropical) monsoon and the East Asian (subtropical) monsoon, and the role of the Tibetan plateau.

    ADS  CAS  Google Scholar 

  29. 29

    Muri, H., Berger, A., Yin, Q., Karami, M. P. & Barriat, P.-Y. The climate of the MIS-13 interglacial according to HadCM3. J. Clim. 26, 9696–9712 (2013)

    ADS  Google Scholar 

  30. 30

    Metcalfe, S. E., Barron, J. A. & Davies, S. J. The Holocene history of the North American Monsoon: ‘known knowns’ and ‘known unknowns’ in understanding its spatial and temporal complexity. Quat. Sci. Rev. 120, 1–27 (2015)

    ADS  Google Scholar 

  31. 31

    Mantsis, D. F. et al. The response of large-scale circulation to obliquity-induced changes in meridional heating gradients. J. Clim. 27, 5504–5516 (2014)

    ADS  Google Scholar 

  32. 32

    Baker, P. A. & Fritz, S. C. Nature and causes of Quaternary climate variation of tropical South America. Quat. Sci. Rev. 124, 31–47 (2015)

    ADS  Google Scholar 

  33. 33

    Rachmayani, R., Prange, M. & Schulz, M. Intra-interglacial climate variability: model simulations of Marine Isotope Stages 1, 5, 11, 13, and 15. Clim. Past 12, 677–695 (2016)

    Google Scholar 

  34. 34

    Liu, X. & Battisti, D. S. The influence of orbital forcing of tropical insolation on the climate and isotopic composition of precipitation in South America. J. Clim. 28, 4841–4862 (2015)

    ADS  Google Scholar 

  35. 35

    Dallmeyer, A., Claussen, M. & Otto, J. Contribution of oceanic and vegetation feedbacks to Holocene climate change in monsoonal Asia. Clim. Past 6, 195–218 (2010)

    Google Scholar 

  36. 36

    Braconnot, P., Marzin, C., Grégoire, L., Mosquet, E. & Marti, O. Monsoon response to changes in Earth’s orbital parameters: comparisons between simulations of the Eemian and of the Holocene. Clim. Past 4, 281–294 (2008)

    Google Scholar 

  37. 37

    Schneider, T., Bischoff, T. & Haug, G. H. Migrations and dynamics of the intertropical convergence zone. Nature 513, 45–53 (2014). This paper reviews the current understanding of ITCZ shifts on modern and palaeoclimatic timescales, which is based on considerations of atmospheric energy balance.

    ADS  CAS  Google Scholar 

  38. 38

    Chiang, J. H. & Bitz, C. Influence of high latitude ice cover on the marine Intertropical Convergence Zone. Clim. Dyn. 25, 477–496 (2005)

    Google Scholar 

  39. 39

    Chiang, J. C. H., Biasutti, M. & Battisti, D. S. Sensitivity of the Atlantic Intertropical Convergence Zone to Last Glacial Maximum boundary conditions. Paleoceanography 18, 1094 (2003)

    ADS  Google Scholar 

  40. 40

    Rahmstorf, S. Ocean circulation and climate during the past 120,000 years. Nature 419, 207–214 (2002)

    ADS  CAS  PubMed  Google Scholar 

  41. 41

    Gottschalk, J. et al. Abrupt changes in the southern extent of North Atlantic Deep Water during Dansgaard–Oeschger events. Nature Geosci. 8, 950–954 (2015)

    ADS  CAS  Google Scholar 

  42. 42

    Zhang, X., Prange, M., Merkel, U. & Schulz, M. Spatial fingerprint and magnitude of changes in the Atlantic meridional overturning circulation during marine isotope stage 3. Geophys. Res. Lett. 42, 1903–1911 (2015)

    ADS  Google Scholar 

  43. 43

    Zhisheng, A. et al. Global monsoon dynamics and climate change. Annu. Rev. Earth Planet. Sci. 43, 29–77 (2015)

    ADS  Google Scholar 

  44. 44

    McManus, J. F., Francois, R., Gherardi, J. M., Keigwin, L. D. & Brown-Leger, S. Collapse and rapid resumption of Atlantic meridional circulation linked to deglacial climate changes. Nature 428, 834–837 (2004)

    ADS  CAS  Google Scholar 

  45. 45

    Liu, Z. et al. Transient simulation of last deglaciation with a new mechanism for Bølling–Allerød warming. Science 325, 310–314 (2009)

    ADS  CAS  Google Scholar 

  46. 46

    Otto-Bliesner, B. L. et al. Coherent changes of southeastern equatorial and northern African rainfall during the last deglaciation. Science 346, 1223–1227 (2014). This study provides a mechanistic understanding of the changes in deglacial tropical African precipitation based on the transient TraCE-21k model simulation.

    ADS  CAS  PubMed  Google Scholar 

  47. 47

    Goswami, B. N., Madhusoodanan, M. S., Neema, C. P. & Sengupta, D. A physical mechanism for North Atlantic SST influence on the Indian summer monsoon. Geophys. Res. Lett. 33, L02706 (2006)

    ADS  Google Scholar 

  48. 48

    Zhang, R. & Delworth, T. L. Simulated tropical response to a substantial weakening of the Atlantic thermohaline circulation. J. Clim. 18, 1853–1860 (2005)

    ADS  Google Scholar 

  49. 49

    Marzin, C., Kallel, N., Kageyama, M., Duplessy, J.-C. & Braconnot, P. Glacial fluctuations of the Indian monsoon and their relationship with North Atlantic climate: new data and modelling experiments. Clim. Past 9, 2135–2151 (2013)

    Google Scholar 

  50. 50

    Mohtadi, M. et al. North Atlantic forcing of tropical Indian Ocean climate. Nature 509, 76–80 (2014)

    ADS  CAS  PubMed  Google Scholar 

  51. 51

    Ting, M., Kushnir, Y., Seager, R. & Li, C. Robust features of Atlantic multi-decadal variability and its climate impacts. Geophys. Res. Lett. 38, L17705 (2011). This work analyses the patterns of global precipitation response to AMO variability in climate models and observational data.

    ADS  Google Scholar 

  52. 52

    Berkelhammer, M. et al. Persistent multidecadal power of the Indian Summer Monsoon. Earth Planet. Sci. Lett. 290, 166–172 (2010)

    ADS  CAS  Google Scholar 

  53. 53

    Vuille, M. et al. A review of the South American monsoon history as recorded in stable isotopic proxies over the past two millennia. Clim. Past 8, 1309–1321 (2012)

    Google Scholar 

  54. 54

    Shanahan, T. M. et al. Atlantic forcing of persistent drought in West Africa. Science 324, 377–380 (2009)

    ADS  CAS  PubMed  Google Scholar 

  55. 55

    Rahmstorf, S. et al. Exceptional twentieth-century slowdown in Atlantic Ocean overturning circulation. Nature Clim. Change 5, 475–480 (2015)

    ADS  Google Scholar 

  56. 56

    Russell, J. M. et al. Glacial forcing of central Indonesian hydroclimate since 60,000 y B.P. Proc. Natl Acad. Sci. USA 111, 5100–5105 (2014)

    ADS  CAS  PubMed  Google Scholar 

  57. 57

    Vallé, F., Dupont, L. M., Leroy, S. A. G., Schefuß, E. & Wefer, G. Pliocene environmental change in West Africa and the onset of strong NE trade winds (ODP Sites 659 and 658). Palaeogeogr. Palaeoclimatol. Palaeoecol. 414, 403–414 (2014)

    Google Scholar 

  58. 58

    Zhang, R. et al. Mid-Pliocene East Asian monsoon climate simulated in the PlioMIP. Clim. Past 9, 2085–2099 (2013)

    Google Scholar 

  59. 59

    Kumar, K. K., Rajagopalan, B., Hoerling, M., Bates, G. & Cane, M. Unraveling the mystery of Indian monsoon failure during El Niño. Science 314, 115–119 (2006)

    ADS  CAS  PubMed  Google Scholar 

  60. 60

    Yeh, S.-W. et al. El Niño in a changing climate. Nature 461, 511–514 (2009)

    ADS  CAS  PubMed  Google Scholar 

  61. 61

    Lachniet, M. S., Bernal, J. P., Asmerom, Y., Polyak, V. & Piperno, D. A 2400 yr Mesoamerican rainfall reconstruction links climate and cultural change. Geology 40, 259–262 (2012)

    ADS  Google Scholar 

  62. 62

    Douglas, P. M. J. et al. Drought, agricultural adaptation, and sociopolitical collapse in the Maya Lowlands. Proc. Natl Acad. Sci. USA 112, 5607–5612 (2015)

    ADS  CAS  PubMed  Google Scholar 

  63. 63

    Bernal, J. P. et al. A speleothem record of Holocene climate variability from southwestern Mexico. Quat. Res. 75, 104–113 (2011)

    CAS  Google Scholar 

  64. 64

    Polissar, P. J., Abbott, M. B., Wolfe, A. P., Vuille, M. & Bezada, M. Synchronous interhemispheric Holocene climate trends in the tropical Andes. Proc. Natl Acad. Sci. USA 110, 14551–14556 (2013)

    ADS  CAS  PubMed  Google Scholar 

  65. 65

    Asmerom, Y., Polyak, V. J., Rasmussen, J. B. T., Burns, S. J. & Lachniet, M. Multidecadal to multicentury scale collapses of Northern Hemisphere monsoons over the past millennium. Proc. Natl Acad. Sci. USA 110, 9651–9656 (2013)

    ADS  CAS  PubMed  Google Scholar 

  66. 66

    Myers, C. G. et al. Northeast Indian stalagmite records Pacific decadal climate change: implications for moisture transport and drought in India. Geophys. Res. Lett. 42, 4124–4132 (2015)

    ADS  Google Scholar 

  67. 67

    Cook, E. R. et al. Asian monsoon failure and megadrought during the last millennium. Science 328, 486–489 (2010)

    ADS  CAS  PubMed  Google Scholar 

  68. 68

    Shen, M. et al. Evaporative cooling over the Tibetan Plateau induced by vegetation growth. Proc. Natl Acad. Sci. USA 112, 9299–9304 (2015)

    ADS  CAS  PubMed  Google Scholar 

  69. 69

    Cook, B. I. et al. Pre-Columbian deforestation as an amplifier of drought in Mesoamerica. Geophys. Res. Lett. 39, L16706 (2012)

    ADS  Google Scholar 

  70. 70

    Fu, C. Potential impacts of human-induced land cover change on East Asia monsoon. Global Planet. Change 37, 219–229 (2003)

    ADS  Google Scholar 

  71. 71

    Niyogi, D., Kishtawal, C., Tripathi, S. & Govindaraju, R. S. Observational evidence that agricultural intensification and land use change may be reducing the Indian summer monsoon rainfall. Water Resour. Res. 46, W03533 (2010)

    ADS  Google Scholar 

  72. 72

    Yamashima, R., Matsumoto, J., Takata, K. & Takahashi, H. G. Impact of historical land-use changes on the Indian summer monsoon onset. Int. J. Climatol. 35, 2419–2430 (2015)

    Google Scholar 

  73. 73

    Devaraju, N., Bala, G. & Modak, A. Effects of large-scale deforestation on precipitation in the monsoon regions: remote versus local effects. Proc. Natl Acad. Sci. USA 112, 3257–3262 (2015). This model study suggests that large-scale deforestation results in a southward shift of the ITCZ and a decrease in monsoon rainfall in the Northern Hemisphere.

    ADS  CAS  PubMed  Google Scholar 

  74. 74

    Charney, J. G. Dynamics of deserts and drought in the Sahel. Q. J. R. Meteorol. Soc. 101, 193–202 (1975)

    ADS  Google Scholar 

  75. 75

    Kröpelin, S. et al. Climate-driven ecosystem succession in the Sahara: the past 6000 years. Science 320, 765–768 (2008)

    ADS  PubMed  Google Scholar 

  76. 76

    Shanahan, T. M. et al. The time-transgressive termination of the African Humid Period. Nature Geosci. 8, 140–144 (2015)

    ADS  CAS  Google Scholar 

  77. 77

    Liu, Z. et al. Simulating the transient evolution and abrupt change of Northern Africa atmosphere–ocean–terrestrial ecosystem in the Holocene. Quat. Sci. Rev. 26, 1818–1837 (2007)

    ADS  Google Scholar 

  78. 78

    Rachmayani, R., Prange, M. & Schulz, M. North African vegetation–precipitation feedback in early and mid-Holocene climate simulations with CCSM3-DGVM. Clim. Past 11, 175–185 (2015)

    Google Scholar 

  79. 79

    Swann, A. L. S., Fung, I. Y., Liu, Y. & Chiang, J. C. H. Remote vegetation feedbacks and the mid-Holocene green Sahara. J. Clim. 27, 4857–4870 (2014)

    ADS  Google Scholar 

  80. 80

    Gray, L. J. et al. Solar influences on climate. Rev. Geophys. 48, RG4001 (2010). This review discusses the contribution of solar variation to monsoon and North Atlantic climate change on decadal-to-centennial timescales.

    ADS  Google Scholar 

  81. 81

    Schmidt, G. A. et al. Using palaeo-climate comparisons to constrain future projections in CMIP5. Clim. Past 10, 221–250 (2014)

    Google Scholar 

  82. 82

    van Loon, H. & Meehl, G. A. The Indian summer monsoon during peaks in the 11 year sunspot cycle. Geophys. Res. Lett. 39, L13701 (2012)

    ADS  Google Scholar 

  83. 83

    Zhao, L. & Wang, J.-S. Robust response of the East Asian monsoon rainband to solar variability. J. Clim. 27, 3043–3051 (2014)

    ADS  Google Scholar 

  84. 84

    Wang, Y. et al. The Holocene Asian monsoon: links to solar changes and North Atlantic climate. Science 308, 854–857 (2005)

    ADS  CAS  PubMed  Google Scholar 

  85. 85

    Fleitmann, D. et al. Holocene forcing of the Indian monsoon recorded in a stalagmite from southern Oman. Science 300, 1737–1739 (2003)

    ADS  CAS  PubMed  Google Scholar 

  86. 86

    Meehl, G. A., Washington, W. M., Wigley, T. M. L., Arblaster, J. M. & Dai, A. Solar and greenhouse gas forcing and climate response in the twentieth century. J. Clim. 16, 426–444 (2003)

    ADS  Google Scholar 

  87. 87

    Steinke, S. et al. Mid- to late-Holocene Australian–Indonesian summer monsoon variability. Quat. Sci. Rev. 93, 142–154 (2014)

    ADS  Google Scholar 

  88. 88

    Sigl, M. et al. Timing and climate forcing of volcanic eruptions for the past 2,500 years. Nature 523, 543–549 (2015)

    ADS  CAS  PubMed  Google Scholar 

  89. 89

    Winter, A. et al. Persistent drying in the tropics linked to natural forcing. Nature Commun. 6, 7627 (2015)

    ADS  CAS  Google Scholar 

  90. 90

    Ridley, H. E. et al. Aerosol forcing of the position of the intertropical convergence zone since ad 1550. Nature Geosci. 8, 195–200 (2015)

    ADS  MathSciNet  CAS  Google Scholar 

  91. 91

    Man, W., Zhou, T. & Jungclaus, J. H. Effects of large volcanic eruptions on global summer climate and East Asian monsoon changes during the last millennium: analysis of MPI-ESM simulations. J. Clim. 27, 7394–7409 (2014)

    ADS  Google Scholar 

  92. 92

    Anchukaitis, K. J. et al. Influence of volcanic eruptions on the climate of the Asian monsoon region. Geophys. Res. Lett. 37, L22703 (2010)

    ADS  Google Scholar 

  93. 93

    Park, J.-Y., Bader, J. & Matei, D. Northern-hemispheric differential warming is the key to understanding the discrepancies in the projected Sahel rainfall. Nature Commun. 6, 5985 (2015)

    ADS  CAS  Google Scholar 

  94. 94

    Mohtadi, M. et al. Glacial to Holocene swings of the Australian–Indonesian monsoon. Nature Geosci. 4, 540–544 (2011)

    ADS  CAS  Google Scholar 

  95. 95

    Collins, J. A. et al. Estimating the hydrogen isotopic composition of past precipitation using leaf-waxes from western Africa. Quat. Sci. Rev. 65, 88–101 (2013)

    ADS  Google Scholar 

  96. 96

    Bollasina, M. A., Ming, Y. & Ramaswamy, V. Anthropogenic aerosols and the weakening of the South Asian summer monsoon. Science 334, 502–505 (2011)

    ADS  CAS  PubMed  Google Scholar 

  97. 97

    Yuan, Y. & Yang, S. Impacts of different types of El Niño on the East Asian climate: focus on ENSO cycles. J. Clim. 25, 7702–7722 (2012)

    ADS  Google Scholar 

  98. 98

    Bordoni, S. & Schneider, T. Monsoons as eddy-mediated regime transitions of the tropical overturning circulation. Nature Geosci. 1, 515–519 (2008)

    ADS  CAS  Google Scholar 

  99. 99

    Gadgil, S. The Indian monsoon and its variability. Annu. Rev. Earth Planet. Sci. 31, 429–467 (2003)

    ADS  CAS  Google Scholar 

  100. 100

    Zhang, L. & Wang, C. Multidecadal North Atlantic sea surface temperature and Atlantic meridional overturning circulation variability in CMIP5 historical simulations. J. Geophys. Res. Oceans 118, 5772–5791 (2013)

    ADS  Google Scholar 

Download references

Acknowledgements

We are grateful to J. H. C. Bosmans for providing Fig. 3. We thank F. He, Z. Liu and B. Otto-Bliesner for making the TraCE-21k model output available via the Earth System Grid (National Center for Atmospheric Research). This study is supported by the DFG Research Centre/Cluster of Excellence ‘The Ocean in the Earth System’ and the German Ministry of Education and Research (BMBF) grants 03G0228A (EISPAC), 03G0828A (TransGeoBiOc) and 03G0484A (INVERS).

Author information

Affiliations

Authors

Contributions

All authors determined the scope and wrote the paper, and contributed to interpretation and discussion of the results.

Corresponding author

Correspondence to Mahyar Mohtadi.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

PowerPoint slides

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Mohtadi, M., Prange, M. & Steinke, S. Palaeoclimatic insights into forcing and response of monsoon rainfall. Nature 533, 191–199 (2016). https://doi.org/10.1038/nature17450

Download citation

Further reading

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing