Chemical weathering as a mechanism for the climatic control of bedrock river incision

Abstract

Feedbacks between climate, erosion and tectonics influence the rates of chemical weathering reactions1,2, which can consume atmospheric CO2 and modulate global climate3,4. However, quantitative predictions for the coupling of these feedbacks are limited because the specific mechanisms by which climate controls erosion are poorly understood. Here we show that climate-dependent chemical weathering controls the erodibility of bedrock-floored rivers across a rainfall gradient on the Big Island of Hawai‘i. Field data demonstrate that the physical strength of bedrock in streambeds varies with the degree of chemical weathering, which increases systematically with local rainfall rate. We find that incorporating the quantified relationships between local rainfall and erodibility into a commonly used river incision model is necessary to predict the rates and patterns of downcutting of these rivers. In contrast to using only precipitation-dependent river discharge to explain the climatic control of bedrock river incision5,6, the mechanism of chemical weathering can explain strong coupling between local climate and river incision.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Figure 1: Field area, measurement locations and study channels.
Figure 2: Bedrock chemistry as a function of local MAP.
Figure 3: Characterization of controls on rock strength.

References

  1. 1

    Riebe, C. S., Kirchner, J. W. & Finkel, R. C. Erosional and climatic effects on long-term chemical weathering rates in granitic landscapes spanning diverse climate regimes. Earth Planet. Sci. Lett. 224, 547–562 (2004)

    ADS  CAS  Article  Google Scholar 

  2. 2

    Dixon, J. L., Hartshorn, A. S., Heimsath, A. M., DiBiase, R. A. & Whipple, K. X. Chemical weathering response to tectonic forcing: a soils perspective from the San Gabriel Mountains, California. Earth Planet. Sci. Lett. 323–324, 40–49 (2012)

    ADS  Article  Google Scholar 

  3. 3

    Wallmann, K. Controls on the Cretaceous and Cenozoic evolution of seawater composition, atmospheric CO2 and climate. Geochim. Cosmochim. Acta 65, 3005–3025 (2001)

    ADS  CAS  Article  Google Scholar 

  4. 4

    Gaillardet, J., Dupré, B., Louvat, P. & Allegre, C. Global silicate weathering and CO2 consumption rates deduced from the chemistry of large rivers. Chem. Geol. 159, 3–30 (1999)

    ADS  CAS  Article  Google Scholar 

  5. 5

    Roe, G. H., Montgomery, D. R. & Hallet, B. Effects of orographic precipitation variations on the concavity of steady-state river profiles. Geology 30, 143–146 (2002)

    ADS  Article  Google Scholar 

  6. 6

    Ferrier, K. L., Huppert, K. L. & Perron, J. T. Climatic control of bedrock river incision. Nature 496, 206–209 (2013)

    ADS  CAS  Article  Google Scholar 

  7. 7

    Koons, P. O. The topographic evolution of collisional mountain belts: a numerical look at the Southern Alps, New Zealand. Am. J. Sci. 289, 1041–1069 (1989)

    ADS  Article  Google Scholar 

  8. 8

    Beaumont, C., Fullsack, P. & Hamilton, J. in Thrust Tectonics (ed. McClay, K. R. ) 1–18 (Chapman and Hall, 1992)

  9. 9

    Willett, S. D. Orogeny and orography: the effects of erosion on the structure of mountain belts. J. Geophys. Res. 104, 28957–28981 (1999)

    ADS  Article  Google Scholar 

  10. 10

    Reiners, P. W., Ehlers, T. A., Mitchell, S. G. & Montgomery, D. R. Coupled spatial variations in precipitation and long-term erosion rates along the Washington Cascades. Nature 426, 645–647 (2003)

    ADS  CAS  Article  Google Scholar 

  11. 11

    Moon, S. et al. Climatic control of denudation in the deglaciated landscape of the Washington Cascades. Nature Geosci . 4, 469–473 (2011)

    ADS  CAS  Article  Google Scholar 

  12. 12

    Thiede, R. C., Bookhagen, B., Arrowsmith, J. R., Sobel, E. R. & Strecker, M. R. Climatic control on rapid exhumation along the Southern Himalayan Front. Earth Planet. Sci. Lett. 222, 791–806 (2004)

    ADS  CAS  Article  Google Scholar 

  13. 13

    Burbank, D. W. et al. Decoupling of erosion and precipitation in the Himalayas. Nature 426, 652–655 (2003)

    ADS  CAS  Article  Google Scholar 

  14. 14

    Whipple, K. X. The influence of climate on the tectonic evolution of mountain belts. Nature Geosci . 2, 97–104 (2009)

    ADS  CAS  Article  Google Scholar 

  15. 15

    Howard, A. D., Dietrich, W. E. & Seidl, M. A. Modeling fluvial erosion on regional to continental scales. J. Geophys. Res. 99, 13971–13986 (1994)

    ADS  Article  Google Scholar 

  16. 16

    Whipple, K. X., Hancock, G. S. & Anderson, R. S. River incision into bedrock: mechanics and relative efficacy of plucking, abrasion, and cavitation. Geol. Soc. Am. Bull. 112, 490–503 (2000)

    ADS  Article  Google Scholar 

  17. 17

    Galewsky, J. Rain shadow development during the growth of mountain ranges: an atmospheric dynamics perspective. J. Geophys. Res. 114, F01018 (2009)

    ADS  Article  Google Scholar 

  18. 18

    Han, J., Gasparini, N. M., Johnson, J. P. L. & Murphy, B. P. Modeling the influence of rainfall gradients on discharge, bedrock erodibility, and river profile evolution, with application to the Big Island, Hawai’i. J. Geophys. Res. 119, 1418–1440 (2014)

    Article  Google Scholar 

  19. 19

    Moon, V. & Jayawardane, J. Geomechanical and geochemical changes during early stages of weathering of Karamu Basalt, New Zealand. Eng. Geol. 74, 57–72 (2004)

    Article  Google Scholar 

  20. 20

    Sklar, L. S. & Dietrich, W. E. Sediment and rock strength controls on river incision into bedrock. Geology 29, 1087–1090 (2001)

    ADS  Article  Google Scholar 

  21. 21

    Chadwick, O. A. et al. The impact of climate on the biogeochemical functioning of volcanic soils. Chem. Geol. 202, 195–223 (2003)

    ADS  CAS  Article  Google Scholar 

  22. 22

    Montgomery, D. R. Observations on the role of lithology in strath terrace formation and bedrock channel width. Am. J. Sci. 304, 454–476 (2004)

    ADS  Article  Google Scholar 

  23. 23

    Small, E. E., Blom, T., Hancock, G. S., Hynek, B. M. & Wobus, C. W. Variability of rock erodibility in bedrock-floored stream channels based on abrasion mill experiments. J. Geophys. Res. Earth Surf . 120, 1455–1469 (2015)

    ADS  Article  Google Scholar 

  24. 24

    Wolfe, E. W. & Morris, J. Geologic Map of the Island of Hawaii. Map I–2524-A (US Geological Survey, 1996)

  25. 25

    Menking, J. A., Han, J., Gasparini, N. M. & Johnson, J. P. L. The effects of precipitation gradients on river profile evolution on the Big Island of Hawai’i. Geol. Soc. Am. Bull. 125, 594–608 (2013)

    ADS  Article  Google Scholar 

  26. 26

    Giambelluca, T. W. et al. Online Rainfall Atlas of Hawai‘i. Bull. Am. Meteorol. Soc. 94, 313–316 (2013)

    ADS  Article  Google Scholar 

  27. 27

    Porder, S., Hilley, G. E. & Chadwick, O. A. Chemical weathering, mass loss, and dust inputs across a climate by time matrix in the Hawaiian Islands. Earth Planet. Sci. Lett. 258, 414–427 (2007)

    ADS  CAS  Article  Google Scholar 

  28. 28

    Vance, L. K. Geographically Isolated Wetlands and Intermittent/Ephemeral Streams in Montana: Extent, Distribution, and Function http://dx.doi.org/10.5962/bhl.title.51000 (Montana Natural Heritage Program, Helena, Montana, 2009)

  29. 29

    Caruso, B. S. GIS-based stream classification in a mountain watershed for jurisdictional evaluation. J. Am. Water Resour. Assoc. 50, 1304–1324 (2014)

    ADS  Article  Google Scholar 

  30. 30

    Whipple, K. X. & Tucker, G. E. Dynamics of the stream-power river incision model: implications for height limits of mountain ranges, landscape response timescales, and research needs. J. Geophys. Res. 104, 17661–17674 (1999)

    ADS  Article  Google Scholar 

  31. 31

    Basu, A., Ghosh, N. & Das, M. Categorizing weathering grades of quartzitic materials and assessing Brazilian tensile strength with reference to assigned grades. Int. J. Rock Mech. Min. Sci. 49, 148–155 (2012)

    Article  Google Scholar 

  32. 32

    Riebe, C. S., Sklar, L. S., Lukens, C. E. & Shuster, D. L. Climate and topography control the size and flux of sediment produced on steep mountain slopes. Proc. Natl Acad. Sci. USA 112, 15574–15579 (2015)

    ADS  CAS  PubMed  Google Scholar 

  33. 33

    Spengler, S. R. & Garcia, M. O. Geochemistry of the Hawi lavas, Kohala Volcano, Hawaii. Contrib. Mineral. Petrol. 99, 90–104 (1988)

    ADS  CAS  Article  Google Scholar 

  34. 34

    McDougall, I. & Swanson, D. A. Potassium-argon ages of lavas from the Hawi and Pololu volcanic series, Kohala Volcano, Hawaii. Geol. Soc. Am. Bull. 83, 3731–3738 (1972)

    ADS  CAS  Article  Google Scholar 

  35. 35

    Schopka, H. H. & Derry, L. A. Chemical weathering fluxes from volcanic islands and the importance of groundwater: the Hawaiian example. Earth Planet. Sci. Lett. 339–340, 67–78 (2012)

    ADS  Article  Google Scholar 

  36. 36

    Oki, D. S. Geohydrology and Numerical Simulation of the Ground-Water Flow System of Molokai, Hawaii. Water-Resources Investigations Report 97–4176 (US Geological Survey, 1997)

  37. 37

    Lamb, M. P., Howard, D., Dietrich, W. E. & Perron, J. T. Formation of amphitheater-headed valleys by waterfall erosion after large-scale slumping on Hawai’i. Geol. Soc. Am. Bull. 119, 805–822 (2007)

    ADS  Article  Google Scholar 

  38. 38

    Seidl, M., Dietrich, W. & Kirchner, J. Longitudinal profile development into bedrock: an analysis of Hawaiian channels. J. Geol. 102, 457–474 (1994)

    ADS  Article  Google Scholar 

  39. 39

    Mackey, B. H., Scheingross, J. S., Lamb, M. P. & Farley, K. A. Knickpoint formation, rapid propagation, and landscape response following coastal cliff retreat at the last interglacial sea-level highstand: Kaua‘i, Hawai‘i. Geol. Soc. Am. Bull. 126, 925–942 (2014)

    ADS  Article  Google Scholar 

  40. 40

    Aydin, A. & Basu, A. The Schmidt hammer in rock material characterization. Eng. Geol. 81, 1–14 (2005)

    Article  Google Scholar 

  41. 41

    Niedzielski, T., Migoń, P. & Placek, A. A minimum sample size required from Schmidt hammer measurements. Earth Surf. Process. Landf. 34, 1713–1725 (2009)

    ADS  Article  Google Scholar 

  42. 42

    Day, M. J. & Goudie, A. S. Field assessment of rock hardness using the Schmidt test hammer. Br. Geomorphol. Res. Group Tech. Bull. 18, 19–29 (1980)

    Google Scholar 

  43. 43

    International Society for Rock Mechanics, Commission on Standardization of laboratory and Field Tests. Suggested methods for determining tensile strength of rock materials. Int. J. Rock Mech. Min. Sci. Geomech. Abstr. 15, 99–103 (1978)

  44. 44

    Rocco, C., Guinea, G. V., Planas, J. & Elices, M. Mechanisms of rupture in splitting tests. ACI Mater. J. 96, 52–60 (1999)

    CAS  Google Scholar 

  45. 45

    Rowe, H., Hughes, N. & Robinson, K. The quantification and application of handheld energy-dispersive x-ray fluorescence (ED-XRF) in mudrock chemostratigraphy and geochemistry. Chem. Geol. 324–325, 122–131 (2012)

    ADS  Article  Google Scholar 

  46. 46

    Stewart, B. W., Capo, R. C. & Chadwick, O. A. Effects of rainfall on weathering rate, base cation provenance, and Sr isotope composition of Hawaiian soils. Geochim. Cosmochim. Acta 65, 1087–1099 (2001)

    ADS  CAS  Article  Google Scholar 

  47. 47

    Kurtz, A. C., Derry, L. A., Chadwick, O. A. & Alfano, M. J. Refractory element mobility in volcanic soils. Geology 28, 683–686 (2000)

    ADS  CAS  Article  Google Scholar 

Download references

Acknowledgements

This work was supported by NSF grant EAR-1024982 to J.P.L.J., NSF grant EAR-1025055 and a Tulane Research Enhancement grant to N.M.G., and an NSF Graduate Research Fellowship to B.P.M. Airborne LiDAR was acquired by NCALM through a Seed grant to B.P.M. We thank J. Pipan for his work, H. Rowe for his XRF equipment, and landowners (Kohala Institute at ‘Iole, Ponoholo Ranch, and Parker Ranch) for access, support and assistance. We also thank D. Mohrig and D. Breecker for reviews, and L. Olinde, J. Han, G. Fischer, J. Adams, I. Yokelson, and K. Kirchner for assistance in the field.

Author information

Affiliations

Authors

Contributions

J.P.L.J. and N.M.G. conceived the project. B.P.M. conducted the fieldwork, laboratory work, and data analysis. L.S.S. contributed to the analysis and incorporation of rock strength data. B.P.M. wrote the manuscript with interpretations and contributions from all authors.

Corresponding author

Correspondence to Brendan P. Murphy.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Extended data figures and tables

Extended Data Figure 1 Evaluation of temperature effects on Kohala weathering rates.

a, Fresh basalt weathering rates derived from measurements of modern soil weathering rates across the Kohala Peninsula46 (filled black circles) and a best-fit power law regression to the data as a function of MAP (blue line; R2 = 0.96). b, Variation of mean annual temperature, MAT (red dashed line), and MAP (blue dashed line) with elevation across the leeward side of the Kohala Peninsula21. Using the reported MAT from the coast and highest elevations of Kohala, we calculate an environmental lapse rate of 5.3 °C km−1. c, Using the MAP and MAT relations in b, the measured weathering rates (filled black circles) and the best-fit relation (blue line) are replotted as a function of MAT. Using the best-fit estimate at 24 °C as a reference rate, the effect of temperature on the weathering rate was then estimated using the Arrhenius equation (red line). A threefold decrease in weathering rate is expected based on temperature alone, however measured weathering rates increase over three orders of magnitude (blue line). The measured weathering rates (filled black circles) should integrate any possible temperature effects, yet the trends are discordant, demonstrating that temperature is not a first-order control on chemical weathering rates in Kohala.

Extended Data Figure 2 Variation of average dry bulk density with local MAP.

Filled black circles represent data from sites of Hawi basalt, and open black triangles represent data from sites of Pololu basalt, with error bars showing standard error. The plotted regression is for sites in Hawi basalt (R2 = 0.82, p < 0.001), in which bulk density decreases 20% with a 2-m increase in local MAP.

Extended Data Table 1 Average fractional mass loss, τ and MAP
Extended Data Table 2 Dry bulk density, MAP and incision rate
Extended Data Table 3 Rock mechanical properties, MAP and incision rate
Extended Data Table 4 Time-averaged incision rates across the 12 field sites
Extended Data Table 5 Multiple linear regressions of stream longitudinal profiles

PowerPoint slides

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Murphy, B., Johnson, J., Gasparini, N. et al. Chemical weathering as a mechanism for the climatic control of bedrock river incision. Nature 532, 223–227 (2016). https://doi.org/10.1038/nature17449

Download citation

Further reading

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.