Letter | Published:

Regulation of black-hole accretion by a disk wind during a violent outburst of V404 Cygni

Nature volume 534, pages 7578 (02 June 2016) | Download Citation

This article has been updated

Abstract

Accretion of matter onto black holes is universally associated with strong radiative feedback1 and powerful outflows2. In particular, black-hole transients3 have outflows whose properties4 are strongly coupled to those of the accretion flow. This includes X-ray winds of ionized material, expelled from the accretion disk encircling the black hole, and collimated radio jets5,6. Very recently, a distinct optical variability pattern has been reported in the transient stellar-mass black hole V404 Cygni, and interpreted as disrupted mass flow into the inner regions of its large accretion disk7. Here we report observations of a sustained outer accretion disk wind in V404 Cyg, which is unlike any seen hitherto. We find that the outflowing wind is neutral, has a large covering factor, expands at one per cent of the speed of light and triggers a nebular phase once accretion drops sharply and the ejecta become optically thin. The large expelled mass (>10−8 solar masses) indicates that the outburst was prematurely ended when a sizeable fraction of the outer disk was depleted by the wind, detaching the inner regions from the rest of the disk. The luminous, but brief, accretion phases shown by transients with large accretion disks2 imply that this outflow is probably a fundamental ingredient in regulating mass accretion onto black holes.

Access optionsAccess options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Change history

  • 01 June 2016

    : A citation to Extended Data Fig. 6 in the Methods was corrected to Extended Data Fig. 5.

References

  1. 1.

    Observational evidence of active galactic nuclei feedback. Annu. Rev. Astron. Astrophys. 50, 455–489 (2012)

  2. 2.

    & GRS 1915+105 and the disc-jet coupling in accreting black hole systems. Annu. Rev. Astron. Astrophys. 42, 317–364 (2004)

  3. 3.

    , & Black hole transients. Bull. Astron. Soc. India 39, 409–428 (2011)

  4. 4.

    & in Astrophysical Black Holes. Lecture Notes in Physics. Vol. 905, 65–100 (eds et al.) (Springer, 2016)

  5. 5.

    et al. Ubiquitous equatorial accretion disc winds in black hole soft states. Mon. Not. R. Astron. Soc. 422, L11–L15 (2012)

  6. 6.

    & Accretion disk winds as the jet suppression mechanism in the microquasar GRS 1915+105. Nature 458, 481–484 (2009)

  7. 7.

    et al. Repetitive patterns in rapid optical variations in the nearby black-hole binary V404 Cygni. Nature 529, 54–58 (2016)

  8. 8.

    , & A 6.5-day periodicity in the recurrent nova V404 Cygni implying the presence of a black hole. Nature 355, 614–617 (1992)

  9. 9.

    The first accurate parallax distance to a black hole. Astrophys. J. 706, L230–L234 (2009)

  10. 10.

    et al. Swift trigger 643949 is V404 Cyg. GRB Coord. Netw. Circ. 17929 (2015)

  11. 11.

    et al. Correlated optical, X-ray, and γ-ray flaring activity seen with INTEGRAL during the 2015 outburst of V404 Cygni. Astron. Astrophys. 581, L9 (2015)

  12. 12.

    , & Multi-colour optical photometry of V404 Cygni in outburst. Astron. Astrophys. 586, A58 (2016)

  13. 13.

    et al. Detection of transient optical P-Cygni profiles in V404 Cyg. Astron. Telegr. 7659 (2015)

  14. 14.

    & IUE observations of the dwarf nova HL Canis Majoris and the winds of cataclysmic variables. Astrophys. J. 323, 690–713 (1987)

  15. 15.

    & An atlas of theoretical P Cygni profiles. Astrophys. J. Suppl. Ser. 39, 481–511 (1979)

  16. 16.

    , & Compton heated winds and coronae above accretion disks. I. Dynamics. Astrophys. J. 271, 70–88 (1983)

  17. 17.

    et al. High-resolution Chandra HETG spectroscopy of V404 Cygni in Outburst. Astrophys. J. 813, L37 (2015)

  18. 18.

    & The emission-line spectrum from a slab of hydrogen at moderate to high densities. Astrophys. J. Suppl. Ser. 42, 351–383 (1980)

  19. 19.

    & Spectral evolution of Nova (V1494) Aql high velocity jets. Astron. Astrophys. 404, 997–1009 (2003)

  20. 20.

    Spectra of the low-excitation nebulosities around AG Carinae and HD 138403. Mon. Not. R. Astron. Soc. 180, 95–102 (1977)

  21. 21.

    , & SN 2009ip and SN 2010mc: core-collapse Type IIn supernovae arising from blue supergiants. Mon. Not. R. Astron. Soc. 438, 1191–1207 (2014)

  22. 22.

    , & The 1989 May outburst of the soft X-ray transient GS 2023+338 (V404 Cyg). Mon. Not. R. Astron. Soc. 309, 561–575 (1999)

  23. 23.

    FWHM-K2 correlation in black hole transients. Astrophys. J. 808, 80 (2015)

  24. 24.

    et al. Swift J1357.2–0933: the faintest black hole? Mon. Not. R. Astron. Soc. 444, 902–905 (2014)

  25. 25.

    , & Swift triggers on V404 Cyg. Astron. Telegr. 8455 (2015)

  26. 26.

    , , , & Optical studies of V404 Cyg, the X-ray transient GS2023+338. I. The 1989 outburst and decline. Mon. Not. R. Astron. Soc. 250, 712–725 (1991)

  27. 27.

    et al. BlackCAT: a catalogue of stellar-mass black holes in X-ray transients. Astron. Astrophys. 587, A61 (2016)

  28. 28.

    et al. New clues on outburst mechanism and improved spectroscopic elements of the black hole binary V4641 Sagittarii. Mon. Not. R. Astron. Soc. 363, 882–890 (2005)

  29. 29.

    , & The physics of the Heartbeat State of GRS 1915+105. Astrophys. J. 737, 69 (2011)

  30. 30.

    et al. Quasar feedback revealed by giant molecular outflows. Astron. Astrophys. 518, L155 (2010)

  31. 31.

    , & The properties of X-ray and optical light curves of X-ray novae. Astrophys. J. 491, 312–338 (1997)

  32. 32.

    , & SW Sextantis in an excited, low state. Astron. Astrophys. 368, 183–196 (2001)

  33. 33.

    et al. The INTEGRAL mission. Astron. Astrophys. 411, L1–L6 (2003)

  34. 34.

    INTEGRAL observations of V404 Cyg (GS 2023+338): public data products Astron. Telegr. 7758 (2015)

  35. 35.

    et al. ISGRI: the INTEGRAL Soft Gamma-Ray Imager. Astron. Astrophys. 411, L141–L148 (2003)

  36. 36.

    et al. Spectral state dependence of the 0.4-2 MeV polarized emission in Cygnus X-1 seen with INTEGRAL/IBIS, and links with the AMI radio data. Astrophys. J. 807, 17 (2015)

  37. 37.

    et al. The Swift X-ray telescope. Space Sci. Rev. 120, 165–195 (2005)

  38. 38.

    et al. Bright radio flaring from V404 Cyg detected by AMI-LA. Astron. Telegr. 7658 (2015)

  39. 39.

    & Chimenea and other tools: automated imaging of multi-epoch radio-synthesis data with CASA. Astron. Comput. 13, 38–49 (2015)

  40. 40.

    et al. Follow-up observations at 16 and 33GHz of extragalactic sources from WMAP 3-yr data: I—spectral properties. Mon. Not. R. Astron. Soc. 400, 984–994 (2009)

  41. 41.

    , , , & CASA architecture and applications. Astron. Soc. Pacif. Conf. Ser. 766, 127 (2007)

  42. 42.

    CASA Consortium. CASA: Common Astronomy Software Applications. Astrophys. Source Code Lib. ascl:1107.013, (2011)

  43. 43.

    & Mass measurements of stellar and intermediate-mass black holes. Space Sci. Rev. 183, 223–252 (2014)

  44. 44.

    , & Black hole binaries and X-ray transients. Astrophys. J. 464, L127–L130 (1996)

  45. 45.

    & On the role of the ultraviolet and X-ray radiation in driving a disk wind in X-ray binaries. Astrophys. J. 565, 455–470 (2002)

  46. 46.

    & Black holes in binary systems. Observational appearance. Astron. Astrophys. 24, 337–355 (1973)

  47. 47.

    et al. IUE spectroscopy of cataclysmic variables. Astron. Astrophys. 102, 337–346 (1981)

  48. 48.

    & Preparing for an explosion: hydrodynamic instabilities and turbulence in presupernovae. Astrophys. J. 785, 82 (2014)

  49. 49.

    et al. NuSTAR observation of V404 Cyg during/after decline. Astron. Telegr. 7752 (2015)

  50. 50.

    & The light curves of soft X-ray transients. Mon. Not. R. Astron. Soc. 293, L42–L48 (1998)

  51. 51.

    et al. INTEGRAL and Swift observations of V404 Cyg: going back to quiescence? Astron. Telegr. 8510 (2016)

  52. 52.

    , & On the outburst recurrence time for the accretion disk limit cycle mechanism in dwarf novae. Astrophys. J. 333, 227–235 (1988)

Download references

Acknowledgements

Nine of the spectra of 27 June were taken during the visit of King Felipe VI of Spain to the 10.4-m Gran Telescopio Canarias (GTC); we appreciate the support this visit provides to astrophysical research in Spain. This work is based on observations made with the GTC telescope, in the Spanish Observatorio del Roque de los Muchachos of the Instituto de Astrofísica de Canarias, during both Time Allocation Committee and Director’s Discretionary observing time. We are thankful to the GTC team for the fast response and efficient work throughout the observing campaign. We acknowledge support by the Spanish Ministerio de Economía y competitividad under grants AYA2013-42627 and PSR2015-00397, the Leverhulme Trust Visiting Professorship Grant VP2-2015-046, the International Research Fellowship program of the Japan Society for the Promotion of Science (PE15024), the Bundesministerium für Wirtschaft und Technologie (BMWI/DLR, FKZ 50 OR 1408) and the French Research National Agency’s CHAOS project ANR-12-BS05-0009. The use of the MOLLY software developed by T. R. Marsh is gratefully acknowledged.

Author information

Affiliations

  1. Instituto de Astrofísica de Canarias, E-38205 La Laguna, Santa Cruz de Tenerife, Spain

    • T. Muñoz-Darias
    • , J. Casares
    • , D. Mata Sánchez
    • , M. Armas Padilla
    •  & M. Linares
  2. Departamento de Astrofísica, Universidad de La Laguna, E-38206 La Laguna, Santa Cruz de Tenerife, Spain

    • T. Muñoz-Darias
    • , J. Casares
    • , D. Mata Sánchez
    • , M. Armas Padilla
    •  & M. Linares
  3. Department of Physics, Astrophysics, University of Oxford, Denys Wilkinson Building, Keble Road, Oxford OX1 3RH, UK

    • J. Casares
    • , R. P. Fender
    • , P. A. Charles
    •  & K. P. Mooley
  4. Department of Astronomy, Kyoto University, Kyoto 606-8502, Japan

    • M. Armas Padilla
  5. Institutt for Fysikk, Norges Teknisk-Naturvitenskapelige Universitet (NTNU), Trondheim, Norway

    • M. Linares
  6. Max-Planck-Institut für extraterrestrische Physik, Giessenbachstrasse 1, D-85748 Garching bei München, Germany

    • G. Ponti
  7. School of Physics and Astronomy, University of Southampton, Southampton SO17 1BJ, UK

    • P. A. Charles
  8. Laboratoire Astrophysique Instrumentation Modélisation (AIM), UMR 7158, CEA/CNRS/Université Paris Diderot, CEA DRF/IRFU/SAp, 91191 Gif-sur-Yvette, France

    • J. Rodriguez

Authors

  1. Search for T. Muñoz-Darias in:

  2. Search for J. Casares in:

  3. Search for D. Mata Sánchez in:

  4. Search for R. P. Fender in:

  5. Search for M. Armas Padilla in:

  6. Search for M. Linares in:

  7. Search for G. Ponti in:

  8. Search for P. A. Charles in:

  9. Search for K. P. Mooley in:

  10. Search for J. Rodriguez in:

Contributions

T.M.-D. performed the GTC data analysis and wrote the paper. J.C. contributed to the GTC data analysis and assisted in writing the paper. D.M.S. performed the GTC data reduction and contributed to the GTC data analysis. R.P.F. provided the radio data and contributed to the scientific discussion. M.A.P. performed X-ray analysis and contributed to the scientific discussion. M.L. provided day-12 GTC spectra and assisted in writing the paper. G.P. contributed to the scientific discussion. P.A.C. contributed to the scientific discussion and assisted in writing the paper. K.P.M. performed radio data analysis. J.R. provided part of the INTEGRAL data.

Competing interests

The authors declare no competing financial interests.

Corresponding author

Correspondence to T. Muñoz-Darias.

Extended data

About this article

Publication history

Received

Accepted

Published

DOI

https://doi.org/10.1038/nature17446

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.