Article | Published:

Priming and polymerization of a bacterial contractile tail structure

Nature volume 531, pages 5963 (03 March 2016) | Download Citation

Abstract

Contractile tails are composed of an inner tube wrapped by an outer sheath assembled in an extended, metastable conformation that stores mechanical energy necessary for its contraction. Contraction is used to propel the rigid inner tube towards target cells for DNA or toxin delivery. Although recent studies have revealed the structure of the contractile sheath of the type VI secretion system, the mechanisms by which its polymerization is controlled and coordinated with the assembly of the inner tube remain unknown. Here we show that the starfish-like TssA dodecameric complex interacts with tube and sheath components. Fluorescence microscopy experiments in enteroaggregative Escherichia coli reveal that TssA binds first to the type VI secretion system membrane core complex and then initiates tail polymerization. TssA remains at the tip of the growing structure and incorporates new tube and sheath blocks. On the basis of these results, we propose that TssA primes and coordinates tail tube and sheath biogenesis.

Access optionsAccess options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Accessions

Primary accessions

Electron Microscopy Data Bank

Data deposits

Coordinates and structure factors have been deposited in the Protein Data Bank under accession numbers 4YO3 and 4YO5 for TssANt2 and TssACt respectively. Electron microscopy map for full-length TssA has been deposited in the Electron Microscopy Data Bank under accession code EMD-3282.

References

  1. 1.

    & Contractile tail machines of bacteriophages. Adv. Exp. Med. Biol. 726, 93–114 (2012)

  2. 2.

    et al. Atomic structures of a bactericidal contractile nanotube in its pre- and postcontraction states. Nature Struct. Mol. Biol. 22, 377–382 (2015)

  3. 3.

    , & Tubules and donuts: a type VI secretion story. Mol. Microbiol. 76, 815–821 (2010)

  4. 4.

    , , & Photorhabdus virulence cassettes confer injectable insecticidal activity against the wax moth. J. Bacteriol. 188, 2254–2261 (2006)

  5. 5.

    et al. Marine tubeworm metamorphosis induced by arrays of bacterial phage tail-like structures. Science 343, 529–533 (2014)

  6. 6.

    et al. Three-dimensional structure of the toxin-delivery particle antifeeding prophage of Serratia entomophila. J. Biol. Chem. 288, 25276–25284 (2013)

  7. 7.

    & Structural comparison of contractile nanomachines. AIMS Biophysics. 2, 88–115 (2015)

  8. 8.

    et al. Morphogenesis of the T4 tail and tail fibers. Virol. J. 7, 355 (2010)

  9. 9.

    & Pulse-chase analysis of the in vivo assembly of the bacteriophage T4 tail. J. Mol. Biol. 297, 99–117 (2000)

  10. 10.

    et al. Role of antifeeding prophage (Afp) protein Afp16 in terminating the length of the Afp tailocin and stabilizing its sheath. Mol. Microbiol. 89, 702–714 (2013)

  11. 11.

    , , , & The SciZ protein anchors the enteroaggregative Escherichia coli Type VI secretion system to the cell wall. Mol. Microbiol. 75, 886–899 (2010)

  12. 12.

    et al. Towards a structural comprehension of bacterial type VI secretion systems: characterization of the TssJ-TssM complex of an Escherichia coli pathovar. PLoS Pathog. 7, e1002386 (2011)

  13. 13.

    et al. Biogenesis and structure of the Type VI secretion membrane core complex. Nature 523, 555–560 (2015)

  14. 14.

    et al. Architecture and assembly of the Type VI secretion system. Biochim. Biophys. Acta 1843, 1664–1673 (2014)

  15. 15.

    , , & Type VI secretion and bacteriophage tail tubes share a common assembly pathway. EMBO Rep. 15, 315–321 (2014)

  16. 16.

    et al. Type VI secretion apparatus and phage tail-associated protein complexes share a common evolutionary origin. Proc. Natl Acad. Sci. USA 106, 4154–4159 (2009)

  17. 17.

    , , , & Type VI secretion requires a dynamic contractile phage tail-like structure. Nature 483, 182–186 (2012)

  18. 18.

    , , , & Biochemical analysis of TssK, a core component of the bacterial Type VI secretion system, reveals distinct oligomeric states of TssK and identifies a TssK-TssFG subcomplex. Biochem. J. 461, 291–304 (2014)

  19. 19.

    , , , & The Type VI secretion TssEFGK-VgrG phage-like baseplate is recruited to the TssJLM membrane complex via multiple contacts and serves as assembly platform for tail tube/sheath polymerization. PLoS Genet. 11, e1005545 (2015)

  20. 20.

    , & Tit-for-tat: type VI secretion system counterattack during bacterial cell-cell interactions. Cell 152, 884–894 (2013)

  21. 21.

    , , , & Imaging type VI secretion-mediated bacterial killing. Cell Rep. 3, 36–41 (2013)

  22. 22.

    et al. Structure of the VipA/B type VI secretion complex suggests a contraction-state-specific recycling mechanism. Cell Rep. 8, 20–30 (2014)

  23. 23.

    et al. Structure of the type VI secretion system contractile sheath. Cell 160, 952–962 (2015)

  24. 24.

    et al. ClpV recycles VipA/VipB tubules and prevents non-productive tubule formation to ensure efficient type VI protein secretion. Mol. Microbiol. 87, 1013–1028 (2013)

  25. 25.

    et al. TssK is a trimeric cytoplasmic protein interacting with components of both phage-like and membrane anchoring complexes of the type VI secretion system. J. Biol. Chem. 288, 27031–27041 (2013)

  26. 26.

    Assembly of the tail of bacteriophage T4. J. Mol. Biol. 32, 231–262 (1968)

  27. 27.

    et al. Structural characterization and assembly of the distal tail structure of the temperate lactococcal bacteriophage TP901–1. J. Bacteriol. 187, 4187–4197 (2005)

  28. 28.

    et al. The X-ray crystal structure of the phage λ tail terminator protein reveals the biologically relevant hexameric ring structure and demonstrates a conserved mechanism of tail termination among diverse long-tailed phages. J. Mol. Biol. 389, 938–951 (2009)

  29. 29.

    et al. The molecular architecture of the bacteriophage T4 neck. J. Mol. Biol. 425, 1731–1744 (2013)

  30. 30.

    et al. The bacterial flagellar cap as the rotary promoter of flagellin self-assembly. Science 290, 2148–2152 (2000)

  31. 31.

    , , , & An epigenetic switch involving overlapping fur and DNA methylation optimizes expression of a type VI secretion gene cluster. PLoS Genet. 7, e1002205 (2011)

  32. 32.

    & One-step inactivation of chromosomal genes in Escherichia coli K-12 using PCR products. Proc. Natl Acad. Sci. USA 97, 6640–6645 (2000)

  33. 33.

    , & A rapid method for efficient gene replacement in the filamentous fungus Aspergillus nidulans. Nucleic Acids Res. 28, E97 (2000)

  34. 34.

    & RF cloning: a restriction-free method for inserting target genes into plasmids. J. Biochem. Biophys. Methods 67, 67–74 (2006)

  35. 35.

    , , & A bacterial two-hybrid system based on a reconstituted signal transduction pathway. Proc. Natl Acad. Sci. USA 95, 5752–5756 (1998)

  36. 36.

    & The bacterial two-hybrid system based on adenylate cyclase reconstitution in Escherichia coli. Methods 58, 325–334 (2012)

  37. 37.

    et al. Fiji: an open-source platform for biological-image analysis. Nature Methods 9, 676–682 (2012)

  38. 38.

    et al. EMAN2: an extensible image processing suite for electron microscopy. J. Struct. Biol. 157, 38–46 (2007)

  39. 39.

    RELION: implementation of a Bayesian approach to cryo-EM structure determination. J. Struct. Biol. 180, 519–530 (2012)

  40. 40.

    Semi-automated selection of cryo-EM particles in RELION-1.3. J. Struct. Biol. 189, 114–122 (2015)

  41. 41.

    et al. High-resolution noise substitution to measure overfitting and validate resolution in 3D structure determination by single particle electron cryomicroscopy. Ultramicroscopy 135, 24–35 (2013)

  42. 42.

    , , , & PRIMUS: a Windows PC-based system for small-angle scattering data analysis. J. Appl. Crystallogr. 36, 1277–1282 (2003)

  43. 43.

    , , & ATSAS 2.1, a program package for small-angle scattering data analysis. J. Appl. Crystallogr. 39, 277–286 (2006)

  44. 44.

    La diffraction des rayons X aux très petits angles; application à l'étude de phénomènes ultramicroscopiques. Ann. Phys. (Paris) 12, 161–237 (1939)

  45. 45.

    Determination of the regularization parameter in indirect-transform methods using perceptual criteria. J. Appl. Crystallogr. 25, 495–503 (1992)

  46. 46.

    & DAMMIF, a program for rapid ab-initio shape determination in small-angle scattering. J. Appl. Crystallogr. 42, 342–346 (2009)

  47. 47.

    & Uniqueness of ab initio shape determination in small-angle scattering. J. Appl. Crystallogr. 36, 860–864 (2003)

  48. 48.

    & Automated matching of high- and low-resolution structural models. J. Appl. Crystallogr. 34, 33–41 (2001)

  49. 49.

    Acta Crystallogr. D 66, 125–132 (2010)

  50. 50.

    & Substructure solution with SHELXD. Acta Crystallogr. D 58, 1772–1779 (2002)

  51. 51.

    et al. Refinement of severely incomplete structures with maximum likelihood in BUSTER-TNT. Acta Crystallogr. D 60, 2210–2221 (2004)

  52. 52.

    & Coot: model-building tools for molecular graphics. Acta Crystallogr. D 60, 2126–2132 (2004)

  53. 53.

    The PyMOL Molecular Graphics System, Version 1.8 Schrödinger, LLC

  54. 54.

    et al. UCSF Chimera – a visualization system for exploratory research and analysis. J. Comput. Chem. 25, 1605–1612 (2004)

  55. 55.

    et al. Visualization of the Serratia Type VI secretion system reveals unprovoked attacks and dynamic assembly. Cell Rep. 12, 2131–2142 (2015)

  56. 56.

    et al. Crystal structure and self-interaction of the type VI secretion tail-tube protein from enteroaggregative Escherichia coli. PLoS ONE 9, e86918 (2014)

Download references

Acknowledgements

This work was funded by the Centre National de la Recherche Scientifique, the Aix-Marseille Université, and grants from the Agence Nationale de la Recherche to E.C. (ANR-10-JCJC-1303-03), to E.C. and C.C. (ANR-14-CE14-0006-02) and from the Fondation pour la Recherche Médicale to C.C. (FRM DEQ2011-0421282) and supported by the French Infrastructure for Integrated Structural Biology (FRISBI, ANR-10-INSB-05-01). A.Z. and Y.R.B. were supported by doctoral fellowships from the French Ministry of Research. A.Z. and E.D. were supported by end-of-thesis (FDT20140931060) and post-doctoral (SPF20101221116) fellowships from the Fondation pour la Recherche Médicale, respectively. We gratefully acknowledge the Soleil synchrotron radiation facility for beamtime allocation. We thank R. Lloubès, J. Sturgis and A. Galinier for constant support, the members of the Cascales, Cambillau, Lloubès, Sturgis and Bouveret research groups for helpful discussions, E. Bouveret for providing vectors, protocols and advice for the bacterial two-hybrid assay, C. Bebeacua for preliminary electron microscopy analyses, L. Espinosa for help regarding statistical analyses, R. Lebrun and S. Lignon (proteomic platform, IMM) for mass spectrometry analyses, Y. Cully for the Supplementary Video, O. Uderso, I. Bringer and A. Brun for technical assistance, and J. D. Barras-Elatable for encouragement.

Author information

Author notes

    • Yannick R. Brunet

    Present address: Department of Microbiology and Immunobiology, Harvard Medical School, 77 Avenue Louis Pasteur, Boston, Massachussets 02115, USA.

    • Abdelrahim Zoued
    •  & Eric Durand

    These authors contributed equally to this work.

Affiliations

  1. Laboratoire d’Ingénierie des Systèmes Macromoléculaires, Institut de Microbiologie de la Méditerranée, CNRS UMR7255, Aix-Marseille Université, 31 Chemin Joseph Aiguier, 13402 Marseille Cedex 20, France

    • Abdelrahim Zoued
    • , Eric Durand
    • , Yannick R. Brunet
    • , Badreddine Douzi
    • , Nicolas Flaugnatti
    • , Laure Journet
    •  & Eric Cascales
  2. Architecture et Fonction des Macromolécules Biologiques, Centre National de la Recherche Scientifique, UMR 7257, Campus de Luminy, Case 932, 13288 Marseille Cedex 09, France

    • Eric Durand
    • , Silvia Spinelli
    • , Badreddine Douzi
    •  & Christian Cambillau
  3. Architecture et Fonction des Macromolécules Biologiques, Aix-Marseille Université, UMR 7257, Campus de Luminy, Case 932, 13288 Marseille Cedex 09, France

    • Eric Durand
    • , Silvia Spinelli
    • , Badreddine Douzi
    •  & Christian Cambillau
  4. G5 Biologie structurale de la sécrétion bactérienne, Institut Pasteur, 25–28 rue du Docteur Roux, 75015 Paris, France

    • Eric Durand
    •  & Rémi Fronzes
  5. UMR 3528, CNRS, Institut Pasteur, 25–28 rue du Docteur Roux, 75015 Paris, France

    • Eric Durand
    •  & Rémi Fronzes
  6. Laboratoire de Chimie Bactérienne, Institut de Microbiologie de la Méditerranée, CNRS UMR7283, Aix-Marseille Université, 31 Chemin Joseph Aiguier, 13402 Marseille Cedex 20, France

    • Mathilde Guzzo
    •  & Tâm Mignot
  7. Synchrotron Soleil, L’Orme des merisiers, Saint-Aubin BP48, 91192 Gif-sur-Yvette Cedex, France

    • Pierre Legrand

Authors

  1. Search for Abdelrahim Zoued in:

  2. Search for Eric Durand in:

  3. Search for Yannick R. Brunet in:

  4. Search for Silvia Spinelli in:

  5. Search for Badreddine Douzi in:

  6. Search for Mathilde Guzzo in:

  7. Search for Nicolas Flaugnatti in:

  8. Search for Pierre Legrand in:

  9. Search for Laure Journet in:

  10. Search for Rémi Fronzes in:

  11. Search for Tâm Mignot in:

  12. Search for Christian Cambillau in:

  13. Search for Eric Cascales in:

Contributions

A.Z., E.D., C.C. and E.C. designed and conceived the experiments. C.C. and E.C supervised the execution of the experiments. A.Z., E.D., Y.R.B., S.S., B.D. and M.G. performed the experiments. A.Z. performed the in vivo experiments (BACTH, fluorescence microscopy) with the help of Y.R.B., M.G., N.F., L.J. and T.M. E.D. performed the in vitro experiments (protein purification and characterization, SAXS, electron microscopy and X-ray analyses) with the help of S.S., P.L. and R.F. B.D. performed the SPR experiments. P.L., R.F., T.M., C.C. and E.C. provided tools. E.C. wrote the paper with contributions of A.Z., E.D. and C.C.

Competing interests

The authors declare no competing financial interests.

Corresponding authors

Correspondence to Eric Durand or Christian Cambillau or Eric Cascales.

Extended data

Supplementary information

PDF files

  1. 1.

    Supplementary Table

    This file shows the strains, plasmids and oligonucleotides used in this study.

  2. 2.

    Supplementary Figure

    Uncropped scans of western blots and gels presented in Extended Data Fig. 1d, 1e, 2a & 6a. Molecular weight markers (in kDa) are indicated.

Videos

  1. 1.

    Dynamic representation of T6SS assembly highlighting the TssA mode of action

    The TssA protein (red ring) bound to the membrane and baseplate complexes (TssJLM shown in yellow/orange; VgrG spike, purple; baseplate, orange) initiates tail polymerization. Polymerization is pursued by the TssA-dependent sequential and processive recruitement of Hcp rings (green rings) and TssBC strands (blue rings). Once assembled, the sheath contracts and propels the Hcp/VgrG needle to the cell exterior.

About this article

Publication history

Received

Accepted

Published

DOI

https://doi.org/10.1038/nature17182

Further reading

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.