Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

On-surface synthesis of graphene nanoribbons with zigzag edge topology


Graphene-based nanostructures exhibit electronic properties that are not present in extended graphene. For example, quantum confinement in carbon nanotubes and armchair graphene nanoribbons leads to the opening of substantial electronic bandgaps that are directly linked to their structural boundary conditions1,2. Nanostructures with zigzag edges are expected to host spin-polarized electronic edge states and can thus serve as key elements for graphene-based spintronics3. The edge states of zigzag graphene nanoribbons (ZGNRs) are predicted to couple ferromagnetically along the edge and antiferromagnetically between the edges4, but direct observation of spin-polarized edge states for zigzag edge topologies—including ZGNRs—has not yet been achieved owing to the limited precision of current top-down approaches5,6,7,8,9,10. Here we describe the bottom-up synthesis of ZGNRs through surface-assisted polymerization and cyclodehydrogenation of specifically designed precursor monomers to yield atomically precise zigzag edges. Using scanning tunnelling spectroscopy we show the existence of edge-localized states with large energy splittings. We expect that the availability of ZGNRs will enable the characterization of their predicted spin-related properties, such as spin confinement11 and filtering12,13, and will ultimately add the spin degree of freedom to graphene-based circuitry.

This is a preview of subscription content, access via your institution

Relevant articles

Open Access articles citing this article.

Access options

Rent or buy this article

Get just this article for as long as you need it


Prices may be subject to local taxes which are calculated during checkout

Figure 1: Synthetic strategy to GNRs with zigzag edges.
Figure 2: Synthesis and characterization of atomically precise 6-ZGNRs.
Figure 3: Edge-state characterization of 6-ZGNRs.
Figure 4: Synthesis and characterization of edge-modified 6-ZGNRs.


  1. Saito, R., Fujita, M., Dresselhaus, G. & Dresselhaus, M. S. Electronic structure of graphene tubules based on C60 . Phys. Rev. B 46, 1804–1811 (1992)

    Article  ADS  CAS  Google Scholar 

  2. Wakabayashi, K., Fujita, M., Ajiki, H. & Sigrist, M. Electronic and magnetic properties of nanographite ribbons. Phys. Rev. B 59, 8271–8282 (1999)

    Article  ADS  CAS  Google Scholar 

  3. Han, W., Kawakami, R. K., Gmitra, M. & Fabian, J. Graphene spintronics. Nature Nanotechnol. 9, 794–807 (2014)

    Article  ADS  CAS  Google Scholar 

  4. Nakada, K., Fujita, M., Dresselhaus, G. & Dresselhaus, M. S. Edge state in graphene ribbons: nanometer size effect and edge shape dependence. Phys. Rev. B 54, 17954–17961 (1996)

    Article  ADS  CAS  Google Scholar 

  5. Han, M. Y., Ozyilmaz, B., Zhang, Y. & Kim, P. Energy band-gap engineering of graphene nanoribbons. Phys. Rev. Lett. 98, 206805 (2007)

    Article  ADS  Google Scholar 

  6. Kosynkin, D. V. et al. Longitudinal unzipping of carbon nanotubes to form graphene nanoribbons. Nature 458, 872–876 (2009)

    Article  ADS  CAS  Google Scholar 

  7. Li, X., Wang, X., Zhang, L., Lee, S. & Dai, H. Chemically derived, ultrasmooth graphene nanoribbon semiconductors. Science 319, 1229–1232 (2008)

    Article  ADS  CAS  Google Scholar 

  8. Wang, X. & Dai, H. Etching and narrowing of graphene from the edges. Nature Chem. 2, 661–665 (2010)

    Article  ADS  CAS  Google Scholar 

  9. Magda, G. Z. et al. Room-temperature magnetic order on zigzag edges of narrow graphene nanoribbons. Nature 514, 608–611 (2014)

    Article  ADS  CAS  Google Scholar 

  10. Ma, L., Wang, J. & Ding, F. Recent progress and challenges in graphene nanoribbon synthesis. ChemPhysChem 14, 47–54 (2013)

    Article  CAS  Google Scholar 

  11. Topsakal, M., Sevinçli, H. & Ciraci, S. Spin confinement in the superlattices of graphene ribbons. Appl. Phys. Lett. 92, 173118 (2008)

    Article  ADS  Google Scholar 

  12. Wimmer, M., Adagideli, İ., Berber, S., Tománek, D. & Richter, K. Spin currents in rough graphene nanoribbons: universal fluctuations and spin injection. Phys. Rev. Lett. 100, 177207 (2008)

    Article  ADS  Google Scholar 

  13. Son, Y.-W., Cohen, M. L. & Louie, S. G. Half-metallic graphene nanoribbons. Nature 444, 347–349 (2006)

    Article  ADS  CAS  Google Scholar 

  14. Cai, J. et al. Atomically precise bottom-up fabrication of graphene nanoribbons. Nature 466, 470–473 (2010)

    Article  ADS  CAS  Google Scholar 

  15. Chen, Y.-C. et al. Tuning the band gap of graphene nanoribbons synthesized from molecular precursors. ACS Nano 7, 6123–6128 (2013)

    Article  CAS  Google Scholar 

  16. Zhang, H. et al. On-surface synthesis of rylene-type graphene nanoribbons. J. Am. Chem. Soc. 137, 4022–4025 (2015)

    Article  CAS  Google Scholar 

  17. Bronner, C. et al. Aligning the band gap of graphene nanoribbons by monomer doping. Angew. Chem. Int. Ed. 52, 4422–4425 (2013)

    Article  CAS  Google Scholar 

  18. Cai, J. et al. Graphene nanoribbon heterojunctions. Nature Nanotechnol. 9, 896–900 (2014)

    Article  ADS  CAS  Google Scholar 

  19. Chen, Y.-C. et al. Molecular bandgap engineering of bottom-up synthesized graphene nanoribbon heterojunctions. Nature Nanotechnol. 10, 156–160 (2015)

    Article  ADS  CAS  Google Scholar 

  20. Gross, L., Mohn, F., Moll, N., Liljeroth, P. & Meyer, G. The chemical structure of a molecule resolved by atomic force microscopy. Science 325, 1110–1114 (2009)

    Article  ADS  CAS  Google Scholar 

  21. Li, Y., Zhang, W., Morgenstern, M. & Mazzarello, R. Electronic and magnetic properties of zigzag graphene nanoribbons on the (111) surface of Cu, Ag, and Au. Phys. Rev. Lett. 110, 216804 (2013)

    Article  ADS  Google Scholar 

  22. Repp, J., Meyer, G., Stojković, S. M., Gourdon, A. & Joachim, C. Molecules on insulating films: scanning-tunneling microscopy imaging of individual molecular orbitals. Phys. Rev. Lett. 94, 026803 (2005)

    Article  ADS  Google Scholar 

  23. Yang, L., Park, C.-H., Son, Y.-W., Cohen, M. L. & Louie, S. G. Quasiparticle energies and band gaps in graphene nanoribbons. Phys. Rev. Lett. 99, 186801 (2007)

    Article  ADS  Google Scholar 

  24. Ritter, K. A. & Lyding, J. W. The influence of edge structure on the electronic properties of graphene quantum dots and nanoribbons. Nature Mater. 8, 235–242 (2009)

    Article  ADS  CAS  Google Scholar 

  25. Tao, C. et al. Spatially resolving edge states of chiral graphene nanoribbons. Nature Phys. 7, 616–620 (2011)

    Article  ADS  CAS  Google Scholar 

  26. van der Lit, J. et al. Suppression of electron–vibron coupling in graphene nanoribbons contacted via a single atom. Nature Commun. 4, 2023 (2013)

    Article  ADS  Google Scholar 

  27. Li, Y. Y., Chen, M. X., Weinert, M. & Li, L. Direct experimental determination of onset of electron–electron interactions in gap opening of zigzag graphene nanoribbons. Nature Commun. 5, 4311 (2014)

    Article  ADS  CAS  Google Scholar 

  28. Dutta, S. & Wakabayashi, K. Tuning charge and spin excitations in zigzag edge nanographene ribbons. Sci. Rep. 2, 519 (2012)

    Article  ADS  Google Scholar 

  29. Yang, L., Cohen, M. L. & Louie, S. G. Magnetic edge-state excitons in zigzag graphene nanoribbons. Phys. Rev. Lett. 101, 186401 (2008)

    Article  ADS  Google Scholar 

  30. Yazyev, O. V. A guide to the design of electronic properties of graphene nanoribbons. Acc. Chem. Res. 46, 2319–2328 (2013)

    Article  CAS  Google Scholar 

  31. Li, Y., Zhou, Z., Cabrera, C. R. & Chen, Z. Preserving the edge magnetism of zigzag graphene nanoribbons by ethylene termination: insight by Clar’s rule. Sci. Rep. 3, 2030 (2013)

    Article  ADS  Google Scholar 

  32. Giessibl, F. J. Atomic resolution on Si(111)-(7 × 7) by noncontact atomic force microscopy with a force sensor based on a quartz tuning fork. Appl. Phys. Lett. 76, 1470–1472 (2000)

    Article  ADS  CAS  Google Scholar 

  33. Bartels, L. et al. Dynamics of electron-induced manipulation of individual co molecules on Cu(111). Phys. Rev. Lett. 80, 2004–2007 (1998)

    Article  ADS  CAS  Google Scholar 

  34. Giannozzi, P. et al. QUANTUM ESPRESSO: a modular and open-source software project for quantum simulations of materials. J. Phys. Condens. Matter 21, 395502 (2009)

    Article  Google Scholar 

  35. Goedecker, S., Teter, M. & Hutter, J. Separable dual-space Gaussian pseudopotentials. Phys. Rev. B 54, 1703–1710 (1996)

    Article  ADS  CAS  Google Scholar 

  36. VandeVondele, J. & Hutter, J. Gaussian basis sets for accurate calculations on molecular systems in gas and condensed phases. J. Chem. Phys. 127, 114105 (2007)

    Article  ADS  Google Scholar 

  37. Perdew, J. P., Burke, K. & Ernzerhof, M. Generalized gradient approximation made simple. Phys. Rev. Lett. 77, 3865 (1996)

    Article  ADS  CAS  Google Scholar 

  38. Marini, A., Hogan, C., Grüning, M. & Varsano, D. yambo: an ab initio tool for excited state calculations. Comput. Phys. Commun. 180, 1392–1403 (2009)

    Article  ADS  CAS  Google Scholar 

  39. Godby, R. W. & Needs, R. J. Metal-insulator transition in Kohn-Sham theory and quasiparticle theory. Phys. Rev. Lett. 62, 1169–1172 (1989)

    Article  ADS  CAS  Google Scholar 

  40. Rozzi, C. A., Varsano, D., Marini, A., Gross, E. K. U. & Rubio, A. Exact Coulomb cutoff technique for supercell calculations. Phys. Rev. B 73, 205119 (2006)

    Article  ADS  Google Scholar 

Download references


This work was supported by the Swiss National Science Foundation, the Office of Naval Research BRC Program, the European Research Council (grant NANOGRAPH), the DFG Priority Program SPP 1459, the Graphene Flagship (No. CNECT-ICT-604391), and the European Union Projects UPGRADE, GENIUS and MoQuaS. We acknowledge the Swiss Supercomputing Center (CSCS) for computational resources (project s507). We thank A. Ferretti for his contribution to this project and O. Gröning for discussions.

Author information

Authors and Affiliations



P.R., R.F., X.F. and K.M. conceived and supervised the experiments. B.Y. and T.Du. synthesized the precursor monomers. J.L. and C.S. developed the on-surface synthesis protocols and did the STM analysis. T.Di., J.L. and S.W. performed the AFM imaging; S.W. and J.L. did the spectroscopic analysis. P.S., L.T., C.A.P. and D.P. performed the simulations. C.S., S.W. and P.R. made the figures. P.R., K.M. and R.F. wrote the paper. All authors discussed the results and implications and commented on the manuscript at all stages.

Corresponding authors

Correspondence to Klaus Müllen or Roman Fasel.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

This file contains Supplementary Methods (syntheses of monomers), Supplementary Figures 1-11 and additional references. (PDF 5251 kb)

Supplementary Data

This file contains Crystal Structure Data 1a (single crystal of BrBD-Umbrella). (CIF 21 kb)

PowerPoint slides

Rights and permissions

Reprints and Permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ruffieux, P., Wang, S., Yang, B. et al. On-surface synthesis of graphene nanoribbons with zigzag edge topology. Nature 531, 489–492 (2016).

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI:

This article is cited by


By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing