Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Protein misfolding in the endoplasmic reticulum as a conduit to human disease

Abstract

In eukaryotic cells, the endoplasmic reticulum is essential for the folding and trafficking of proteins that enter the secretory pathway. Environmental insults or increased protein synthesis often lead to protein misfolding in the organelle, the accumulation of misfolded or unfolded proteins — known as endoplasmic reticulum stress — and the activation of the adaptive unfolded protein response to restore homeostasis. If protein misfolding is not resolved, cells die. Endoplasmic reticulum stress and activation of the unfolded protein response help to determine cell fate and function. Furthermore, endoplasmic reticulum stress contributes to the aetiology of many human diseases.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: The dynamic life cycle of a protein in the secretory pathway.
Figure 2: The UPR signalling pathways.
Figure 3: ER stress and human disease.
Figure 4: ER stress and UPR pathways as therapeutic targets.

Similar content being viewed by others

References

  1. Di Prisco, G. V. et al. Translational control of mGluR-dependent long-term depression and object-place learning by eIF2α. Nature Neurosci. 17, 1073–1082 (2014).

    CAS  PubMed  Google Scholar 

  2. Han, J. et al. ER-stress-induced transcriptional regulation increases protein synthesis leading to cell death. Nature Cell Biol. 15, 481–490 (2013). This study identified that CHOP and ATF4 form heterodimers, which leads to increased protein synthesis, oxidative stress and cell death.

    ADS  CAS  PubMed  Google Scholar 

  3. Harding, H. P. et al. Ppp1r15 gene knockout reveals an essential role for translation initiation factor 2 alpha (eIF2α) dephosphorylation in mammalian development. Proc. Natl Acad. Sci. USA 106, 1832–1837 (2009).

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  4. Hollien, J. & Weissman, J. S. Decay of endoplasmic reticulum-localized mRNAs during the unfolded protein response. Science 313, 104–107 (2006).

    ADS  CAS  PubMed  Google Scholar 

  5. Rutkowski, D. T. et al. Adaptation to ER stress is mediated by differential stabilities of pro-survival and pro-apoptotic mRNAs and proteins. PLoS Biol. 4, e374 (2006).

    PubMed  PubMed Central  Google Scholar 

  6. Lin, J. H. et al. IRE1 signaling affects cell fate during the unfolded protein response. Science 318, 944–949 (2007).

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  7. Marciniak, S. J. et al. CHOP induces death by promoting protein synthesis and oxidation in the stressed endoplasmic reticulum. Genes Dev. 18, 3066–3077 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  8. Malhotra, J. D. et al. Antioxidants reduce endoplasmic reticulum stress and improve protein secretion. Proc. Natl Acad. Sci. USA 105, 18525–18530 (2008).

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  9. Song, B., Scheuner, D., Ron, D., Pennathur, S. & Kaufman, R. J. Chop deletion reduces oxidative stress, improves β cell function, and promotes cell survival in multiple mouse models of diabetes. J. Clin. Invest. 118, 3378–3389 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  10. Zinszner, H. et al. CHOP is implicated in programmed cell death in response to impaired function of the endoplasmic reticulum. Genes Dev. 12, 982–995 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  11. Kaufman, R. J. & Malhotra, J. D. Calcium trafficking integrates endoplasmic reticulum function with mitochondrial bioenergetics. Biochim. Biophys. Acta 1843, 2233–2239 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  12. Babour, A., Bicknell, A. A., Tourtellotte, J. & Niwa, M. A surveillance pathway monitors the fitness of the endoplasmic reticulum to control its inheritance. Cell 142, 256–269 (2010). This study showed that the function of the ER is regulated by the MAPK Slt2, not UPR pathways, in cell mitosis in budding yeast.

    CAS  PubMed  PubMed Central  Google Scholar 

  13. Reimold, A. M. et al. Plasma cell differentiation requires the transcription factor XBP-1. Nature 412, 300–307 (2001). This study was the first to demonstrate that XBP1 is required for the differentiation of plasma cells.

    ADS  CAS  PubMed  Google Scholar 

  14. Zhang, K. et al. The unfolded protein response sensor IRE1α is required at 2 distinct steps in B cell lymphopoiesis. J. Clin. Invest. 115, 268–281 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  15. Shaffer, A. L. et al. XBP1, downstream of Blimp-1, expands the secretory apparatus and other organelles, and increases protein synthesis in plasma cell differentiation. Immunity 21, 81–93 (2004).

    CAS  PubMed  Google Scholar 

  16. Hu, C. C., Dougan, S. K., McGehee, A. M., Love, J. C. & Ploegh, H. L. XBP-1 regulates signal transduction, transcription factors and bone marrow colonization in B cells. EMBO J. 28, 1624–1636 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  17. Hassler, J. R. et al. The IRE1α/XBP1s pathway is essential for the glucose response and protection of β cells. PLoS Biol. 13, e1002277 (2015).

    PubMed  PubMed Central  Google Scholar 

  18. Acosta-Alvear, D. et al. XBP1 controls diverse cell type- and condition-specific transcriptional regulatory networks. Mol. Cell 27, 53–66 (2007).

    CAS  PubMed  Google Scholar 

  19. Huh, W. J. et al. XBP1 controls maturation of gastric zymogenic cells by induction of MIST1 and expansion of the rough endoplasmic reticulum. Gastroenterology 139, 2038–2049 (2010).

    CAS  PubMed  Google Scholar 

  20. Lee, A. H., Heidtman, K., Hotamisligil, G. S. & Glimcher, L. H. Dual and opposing roles of the unfolded protein response regulated by IRE1α and XBP1 in proinsulin processing and insulin secretion. Proc. Natl Acad. Sci. USA 108, 8885–8890 (2011).

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  21. Adolph, T. E. et al. Paneth cells as a site of origin for intestinal inflammation. Nature 503, 272–276 (2013).

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  22. Kamimura, D. & Bevan, M. J. Endoplasmic reticulum stress regulator XBP-1 contributes to effector CD8+ T cell differentiation during acute infection. J. Immunol. 181, 5433–5441 (2008).

    CAS  PubMed  Google Scholar 

  23. Iwakoshi, N. N., Pypaert, M. & Glimcher, L. H. The transcription factor XBP-1 is essential for the development and survival of dendritic cells. J. Exp. Med. 204, 2267–2275 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  24. Coelho, D. S. et al. Xbp1-independent Ire1 signaling is required for photoreceptor differentiation and rhabdomere morphogenesis in Drosophila. Cell Rep. 5, 791–801 (2013).

    CAS  PubMed  Google Scholar 

  25. Levi-Ferber, M., Gian, H., Dudkevich, R. & Henis-Korenblit, S. Transdifferentiation mediated tumor suppression by the endoplasmic reticulum stress sensor IRE-1 in C. elegans. eLife 4, e08005 (2015).

    PubMed Central  Google Scholar 

  26. Wang, X. Z. & Ron, D. Stress-induced phosphorylation and activation of the transcription factor CHOP (GADD153) by p38 MAP kinase. Science 272, 1347–1349 (1996). This study identified the role of p38 MAPK-mediated CHOP phosphorylation in adipocyte differentiation.

    ADS  CAS  PubMed  Google Scholar 

  27. Han, J. et al. ER stress signalling through eIF2α and CHOP, but not IRE1α, attenuates adipogenesis in mice. Diabetologia 56, 911–924 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  28. Bobrovnikova-Marjon, E. et al. PERK utilizes intrinsic lipid kinase activity to generate phosphatidic acid, mediate Akt activation, and promote adipocyte differentiation. Mol. Cell. Biol. 32, 2268–2278 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  29. Bobrovnikova-Marjon, E. et al. PERK-dependent regulation of lipogenesis during mouse mammary gland development and adipocyte differentiation. Proc. Natl Acad. Sci. USA 105, 16314–16319 (2008).

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  30. Yu, K. et al. Activating transcription factor 4 regulates adipocyte differentiation via altering the coordinate expression of CCATT/enhancer binding protein β and peroxisome proliferator-activated receptor γ. FEBS J. 281, 2399–2409 (2014).

    CAS  PubMed  Google Scholar 

  31. Feng, Y. X. et al. Epithelial-to-mesenchymal transition activates PERK-eIF2α and sensitizes cells to endoplasmic reticulum stress. Cancer Discov. 4, 702–715 (2014).

    CAS  PubMed  Google Scholar 

  32. Zhou, A. X. et al. C/EBP-homologous protein (CHOP) in vascular smooth muscle cells regulates their proliferation in aortic explants and atherosclerotic lesions. Circ. Res. 116, 1736–1743 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  33. Delepine, M. et al. EIF2AK3, encoding translation initiation factor 2-α kinase 3, is mutated in patients with Wolcott–Rallison syndrome. Nature Genet. 25, 406–409 (2000).

    CAS  PubMed  Google Scholar 

  34. Harding, H. P. et al. Diabetes mellitus and exocrine pancreatic dysfunction in Perk−/− mice reveals a role for translational control in secretory cell survival. Mol. Cell 7, 1153–1163 (2001).

    CAS  PubMed  Google Scholar 

  35. Scheuner, D. et al. Translational control is required for the unfolded protein response and in vivo glucose homeostasis. Mol. Cell 7, 1165–1176 (2001).

    CAS  PubMed  Google Scholar 

  36. Gao, Y. et al. PERK is required in the adult pancreas and is essential for maintenance of glucose homeostasis. Mol. Cell. Biol. 32, 5129–5139 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  37. Back, S. H. et al. Translation attenuation through eIF2α phosphorylation prevents oxidative stress and maintains the differentiated state in β cells. Cell Metab. 10, 13–26 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  38. Usui, M. et al. Atf6α-null mice are glucose intolerant due to pancreatic β-cell failure on a high-fat diet but partially resistant to diet-induced insulin resistance. Metabolism 61, 1118–1128 (2012).

    CAS  PubMed  Google Scholar 

  39. Han, J. et al. Antioxidants complement the requirement for protein chaperone function to maintain β-cell function and glucose homeostasis. Diabetes 64, 2892–2904 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  40. Seo, J. et al. Atf4 regulates obesity, glucose homeostasis, and energy expenditure. Diabetes 58, 2565–2573 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  41. Mao, T. et al. PKA phosphorylation couples hepatic inositol-requiring enzyme 1α to glucagon signaling in glucose metabolism. Proc. Natl Acad. Sci. USA 108, 15852–15857 (2011).

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  42. Birkenfeld, A. L. et al. Influence of the hepatic eukaryotic initiation factor 2α (eIF2α) endoplasmic reticulum (ER) stress response pathway on insulin-mediated ER stress and hepatic and peripheral glucose metabolism. J. Biol. Chem. 286, 36163–36170 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  43. Li, K. et al. MicroRNA-214 suppresses gluconeogenesis by targeting activating transcriptional factor 4. J. Biol. Chem. 290, 8185–8195 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  44. Wang, Y., Vera, L., Fischer, W. H. & Montminy, M. The CREB coactivator CRTC2 links hepatic ER stress and fasting gluconeogenesis. Nature 460, 534–537 (2009).

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  45. Wu, J. et al. ATF6α optimizes long-term endoplasmic reticulum function to protect cells from chronic stress. Dev. Cell 13, 351–364 (2007).

    CAS  PubMed  Google Scholar 

  46. Kohl, S. et al. Mutations in the unfolded protein response regulator ATF6 cause the cone dysfunction disorder achromatopsia. Nature Genet. 47, 757–765 (2015).

    CAS  PubMed  Google Scholar 

  47. Fu, S. et al. Aberrant lipid metabolism disrupts calcium homeostasis causing liver endoplasmic reticulum stress in obesity. Nature 473, 528–531 (2011). This study established a connection between abnormal lipid and calcium metabolism and hepatic ER stress in obesity.

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  48. Volmer, R., van der Ploeg, K. & Ron, D. Membrane lipid saturation activates endoplasmic reticulum unfolded protein response transducers through their transmembrane domains. Proc. Natl Acad. Sci. USA 110, 4628–4633 (2013).

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  49. Lee, J. S., Mendez, R., Heng, H. H., Yang, Z. Q. & Zhang, K. Pharmacological ER stress promotes hepatic lipogenesis and lipid droplet formation. Am. J. Transl. Res. 4, 102–113 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  50. Williams, K. J. et al. An essential requirement for the SCAP/SREBP signaling axis to protect cancer cells from lipotoxicity. Cancer Res. 73, 2850–2862 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  51. Rutkowski, D. T. et al. UPR pathways combine to prevent hepatic steatosis caused by ER stress-mediated suppression of transcriptional master regulators. Dev. Cell 15, 829–840 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  52. Pottekat, A. et al. Insulin biosynthetic interaction network component, TMEM24, facilitates insulin reserve pool release. Cell Rep. 4, 921–930 (2013).

    CAS  PubMed  Google Scholar 

  53. Wang, R. et al. Insulin secretion and Ca2+ dynamics in β-cells are regulated by PERK (EIF2AK3) in concert with calcineurin. J. Biol. Chem. 288, 33824–33836 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  54. Cao, S. S. et al. Phosphorylation of eIF2α is dispensable for differentiation but required at a posttranscriptional level for Paneth cell function and intestinal homeostasis in mice. Inflamm. Bowel Dis. 20, 712–722 (2014).

    PubMed  Google Scholar 

  55. Martinon, F., Chen, X., Lee, A. H. & Glimcher, L. H. TLR activation of the transcription factor XBP1 regulates innate immune responses in macrophages. Nature Immunol. 11, 411–418 (2010). This study demonstrated that TLR2 and TLR4 activate the IRE1α–XBP1 pathway to augment pro-inflammatory cytokine production in macrophages.

    CAS  Google Scholar 

  56. Yamamoto, K. et al. Transcriptional induction of mammalian ER quality control proteins is mediated by single or combined action of ATF6α and XBP1. Dev. Cell 13, 365–376 (2007).

    CAS  PubMed  Google Scholar 

  57. Hetz, C. The unfolded protein response: controlling cell fate decisions under ER stress and beyond. Nature Rev. Mol. Cell Biol. 13, 89–102 (2012).

    CAS  Google Scholar 

  58. Biason-Lauber, A., Lang-Muritano, M., Vaccaro, T. & Schoenle, E. J. Loss of kinase activity in a patient with Wolcott–Rallison syndrome caused by a novel mutation in the EIF2AK3 gene. Diabetes 51, 2301–2305 (2002).

    CAS  PubMed  Google Scholar 

  59. Zhao, L., Longo-Guess, C., Harris, B. S., Lee, J. W. & Ackerman, S. L. Protein accumulation and neurodegeneration in the woozy mutant mouse is caused by disruption of SIL1, a cochaperone of BiP. Nature Genet. 37, 974–979 (2005).

    CAS  PubMed  Google Scholar 

  60. Schroder, M. & Kaufman, R. J. The mammalian unfolded protein response. Annu. Rev. Biochem. 74, 739–789 (2005).

    PubMed  Google Scholar 

  61. Nichols, W. C. et al. Mutations in the ER–Golgi intermediate compartment protein ERGIC-53 cause combined deficiency of coagulation factors V and VIII. Cell 93, 61–70 (1998).

    CAS  PubMed  Google Scholar 

  62. Hetz, C. & Mollereau, B. Disturbance of endoplasmic reticulum proteostasis in neurodegenerative diseases. Nature Rev. Neurosci. 15, 233–249 (2014).

    CAS  Google Scholar 

  63. Kondo, T. et al. Modeling Alzheimer's disease with iPSCs reveals stress phenotypes associated with intracellular Aβ and differential drug responsiveness. Cell Stem Cell 12, 487–496 (2013).

    CAS  PubMed  Google Scholar 

  64. Baleriola, J. et al. Axonally synthesized ATF4 transmits a neurodegenerative signal across brain regions. Cell 158, 1159–1172 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  65. Uehara, T. et al. S-nitrosylated protein-disulphide isomerase links protein misfolding to neurodegeneration. Nature 441, 513–517 (2006).

    ADS  CAS  PubMed  Google Scholar 

  66. Yang, L. et al. S-nitrosylation links obesity-associated inflammation to endoplasmic reticulum dysfunction. Science 349, 500–506 (2015).

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  67. Chung, C. Y. et al. Identification and rescue of α-synuclein toxicity in Parkinson patient-derived neurons. Science 342, 983–987 (2013).

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  68. Credle, J. J. et al. α-Synuclein-mediated inhibition of ATF6 processing into COPII vesicles disrupts UPR signaling in Parkinson's disease. Neurobiol. Dis. 76, 112–125 (2015).

    CAS  PubMed  Google Scholar 

  69. Shimura, H. et al. Ubiquitination of a new form of α-synuclein by parkin from human brain: implications for Parkinson's disease. Science 293, 263–269 (2001).

    CAS  PubMed  Google Scholar 

  70. Vidal, R. L. et al. Targeting the UPR transcription factor XBP1 protects against Huntington's disease through the regulation of FoxO1 and autophagy. Hum. Mol. Genet. 21, 2245–2262 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  71. Ozcan, U. et al. Endoplasmic reticulum stress links obesity, insulin action, and type 2 diabetes. Science 306, 457–461 (2004). This study revealed that ER stress is a central feature of insulin resistance, obesity and type 2 diabetes.

    ADS  PubMed  Google Scholar 

  72. Wang, S. et al. IRE1α–XBP1s induces PDI expression to increase MTP activity for hepatic VLDL assembly and lipid homeostasis. Cell Metab. 16, 473–486 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  73. Zhang, K. et al. Endoplasmic reticulum stress activates cleavage of CREBH to induce a systemic inflammatory response. Cell 124, 587–599 (2006). This study was the first to provide a link between ER stress and the systemic inflammatory response through CREB-H cleavage to induce acute-phase response genes and pro-inflammatory cytokines in hepatocytes.

    CAS  PubMed  Google Scholar 

  74. Lee, A. H., Scapa, E. F., Cohen, D. E. & Glimcher, L. H. Regulation of hepatic lipogenesis by the transcription factor XBP1. Science 320, 1492–1496 (2008).

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  75. So, J. S. et al. Silencing of lipid metabolism genes through IRE1α-mediated mRNA decay lowers plasma lipids in mice. Cell Metab. 16, 487–499 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  76. Zhang, K. et al. The unfolded protein response transducer IRE1α prevents ER stress-induced hepatic steatosis. EMBO J. 30, 1357–1375 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  77. Ozcan, L. et al. Endoplasmic reticulum stress plays a central role in development of leptin resistance. Cell Metab. 9, 35–51 (2009).

    CAS  PubMed  Google Scholar 

  78. Huang, C. J. et al. High expression rates of human islet amyloid polypeptide induce endoplasmic reticulum stress mediated β-cell apoptosis, a characteristic of humans with type 2 but not type 1 diabetes. Diabetes 56, 2016–2027 (2007).

    CAS  PubMed  Google Scholar 

  79. Tersey, S. A. et al. Islet β-cell endoplasmic reticulum stress precedes the onset of type 1 diabetes in the nonobese diabetic mouse model. Diabetes 61, 818–827 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  80. Marhfour, I. et al. Expression of endoplasmic reticulum stress markers in the islets of patients with type 1 diabetes. Diabetologia 55, 2417–2420 (2012).

    CAS  PubMed  Google Scholar 

  81. Lee, J. H. et al. The transcription factor cyclic AMP-responsive element-binding protein H regulates triglyceride metabolism. Nature Med. 17, 812–815 (2011).

    CAS  PubMed  Google Scholar 

  82. Wang, M. & Kaufman, R. J. The impact of the endoplasmic reticulum protein-folding environment on cancer development. Nature Rev. Cancer 14, 581–597 (2014).

    CAS  Google Scholar 

  83. Qiu, Q. et al. Toll-like receptor-mediated IRE1α activation as a therapeutic target for inflammatory arthritis. EMBO J. 32, 2477–2490 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  84. Hasnain, S. Z. et al. Glycemic control in diabetes is restored by therapeutic manipulation of cytokines that regulate beta cell stress. Nature Med. 20, 1417–1426 (2014).

    CAS  PubMed  Google Scholar 

  85. Zhang, K. & Kaufman, R. J. From endoplasmic-reticulum stress to the inflammatory response. Nature 454, 455–462 (2008).

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  86. Menu, P. et al. ER stress activates the NLRP3 inflammasome via an UPR-independent pathway. Cell Death Dis. 3, e261 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  87. Lerner, A. G. et al. IRE1α induces thioredoxin-interacting protein to activate the NLRP3 inflammasome and promote programmed cell death under irremediable ER stress. Cell Metab. 16, 250–264 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  88. Bronner, D. N. et al. Endoplasmic reticulum stress activates the inflammasome via NLRP3- and caspase-2-driven mitochondrial damage. Immunity 43, 451–462 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  89. Cao, S. S. et al. The unfolded protein response and chemical chaperones reduce protein misfolding and colitis in mice. Gastroenterology 144, 989–1000 (2013).

    CAS  PubMed  Google Scholar 

  90. Nakagawa, H. et al. ER stress cooperates with hypernutrition to trigger TNF-dependent spontaneous HCC development. Cancer Cell 26, 331–343 (2014). This study showed the oncogenic role of ER stress in hepatocellular carcinoma tumorigenesis.

    CAS  PubMed  PubMed Central  Google Scholar 

  91. Engin, F. et al. Restoration of the unfolded protein response in pancreatic β cells protects mice against type 1 diabetes. Sci. Transl. Med. 5, 211ra156 (2013).

    PubMed  PubMed Central  Google Scholar 

  92. Kars, M. et al. Tauroursodeoxycholic acid may improve liver and muscle but not adipose tissue insulin sensitivity in obese men and women. Diabetes 59, 1899–1905 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  93. Xiao, C., Giacca, A. & Lewis, G. F. Sodium phenylbutyrate, a drug with known capacity to reduce endoplasmic reticulum stress, partially alleviates lipid-induced insulin resistance and β-cell dysfunction in humans. Diabetes 60, 918–924 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  94. Han, K. L. et al. Therapeutic potential of peroxisome proliferators–activated receptor-α/γ dual agonist with alleviation of endoplasmic reticulum stress for the treatment of diabetes. Diabetes 57, 737–745 (2008).

    CAS  PubMed  Google Scholar 

  95. Yusta, B. et al. GLP-1 receptor activation improves β cell function and survival following induction of endoplasmic reticulum stress. Cell Metab. 4, 391–406 (2006).

    CAS  PubMed  Google Scholar 

  96. Sawkar, A. R. et al. Chemical chaperones increase the cellular activity of N370S β-glucosidase: a therapeutic strategy for Gaucher disease. Proc. Natl Acad. Sci. USA 99, 15428–15433 (2002).

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  97. Zuleta, A., Vidal, R. L., Armentano, D., Parsons, G. & Hetz, C. AAV-mediated delivery of the transcription factor XBP1s into the striatum reduces mutant Huntingtin aggregation in a mouse model of Huntington's disease. Biochem. Biophys. Res. Commun. 420, 558–563 (2012).

    CAS  PubMed  Google Scholar 

  98. Flaherty, D. P. et al. Discovery of sulfonamidebenzamides as selective apoptotic CHOP pathway activators of the unfolded protein response. ACS Med. Chem. Lett. 5, 1278–1283 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  99. Mahadevan, N. R. et al. Transmission of endoplasmic reticulum stress and pro-inflammation from tumor cells to myeloid cells. Proc. Natl Acad. Sci. USA 108, 6561–6566 (2011).

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  100. Taylor, R. C. & Dillin, A. XBP-1 is a cell-nonautonomous regulator of stress resistance and longevity. Cell 153, 1435–1447 (2013). This study showed that forced activation of the UPR in neurons could be transmitted to intestine tissues to increase longevity.

    CAS  PubMed  PubMed Central  Google Scholar 

  101. Williams, K. W. et al. Xbp1s in Pomc neurons connects ER stress with energy balance and glucose homeostasis. Cell Metab. 20, 471–482 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  102. Gardner, B. M. & Walter, P. Unfolded proteins are Ire1-activating ligands that directly induce the unfolded protein response. Science 333, 1891–1894 (2011).

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  103. Carrara, M., Prischi, F., Nowak, P. R., Kopp, M. C. & Ali, M. M. Noncanonical binding of BiP ATPase domain to Ire1 and Perk is dissociated by unfolded protein CH1 to initiate ER stress signaling. eLife 4, e03522 (2015).

    PubMed Central  Google Scholar 

  104. Zhou, J. et al. The crystal structure of human IRE1 luminal domain reveals a conserved dimerization interface required for activation of the unfolded protein response. Proc. Natl Acad. Sci. USA 103, 14343–14348 (2006).

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  105. Fu, S. et al. Phenotypic assays identify azoramide as a small-molecule modulator of the unfolded protein response with antidiabetic activity. Sci. Transl. Med. 7, 292ra98 (2015).

    PubMed  PubMed Central  Google Scholar 

  106. Kudo, T. et al. A molecular chaperone inducer protects neurons from ER stress. Cell Death Differ. 15, 364–375 (2008).

    CAS  PubMed  Google Scholar 

  107. Das, I. et al. Preventing proteostasis diseases by selective inhibition of a phosphatase regulatory subunit. Science 348, 239–242 (2015).

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  108. Sekine, Y. et al. Mutations in a translation initiation factor identify the target of a memory-enhancing compound. Science 348, 1027–1030 (2015).

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  109. Sidrauski, C. et al. Pharmacological brake-release of mRNA translation enhances cognitive memory. eLife 2, e00498 (2013).

    PubMed  PubMed Central  Google Scholar 

  110. Ghosh, R. et al. Allosteric inhibition of the IRE1α RNase preserves cell viability and function during endoplasmic reticulum stress. Cell 158, 534–548 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  111. Tam, A. B., Koong, A. C. & Niwa, M. Ire1 has distinct catalytic mechanisms for XBP1/HAC1 splicing and RIDD. Cell Rep. 9, 850–858 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  112. Bright, M. D., Itzhak, D. N., Wardell, C. P., Morgan, G. J. & Davies, F. E. Cleavage of BLOC1S1 mRNA by IRE1 is sequence specific, temporally separate from XBP1 splicing, and dispensable for cell viability under acute endoplasmic reticulum stress. Mol. Cell. Biol. 35, 2186–2202 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  113. Upton, J. P. et al. IRE1α cleaves select microRNAs during ER stress to derepress translation of proapoptotic Caspase-2. Science 338, 818–822 (2012).

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  114. Sandow, J. J. et al. ER stress does not cause upregulation and activation of caspase-2 to initiate apoptosis. Cell Death Differ. 21, 475–480 (2014).

    CAS  PubMed  Google Scholar 

  115. Lu, M. et al. Opposing unfolded-protein-response signals converge on death receptor 5 to control apoptosis. Science 345, 98–101 (2014).

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  116. Hur, K. Y. et al. IRE1α activation protects mice against acetaminophen-induced hepatotoxicity. J. Exp. Med. 209, 307–318 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  117. Kaser, A. et al. XBP1 links ER stress to intestinal inflammation and confers genetic risk for human inflammatory bowel disease. Cell 134, 743–756 (2008). This study was the first to demonstrate that ER stress in intestinal epithelial cells leads to the development of inflammatory bowel disease.

    CAS  PubMed  PubMed Central  Google Scholar 

  118. Kamata, H. et al. Reactive oxygen species promote TNFα-induced death and sustained JNK activation by inhibiting MAP kinase phosphatases. Cell 120, 649–661 (2005).

    CAS  PubMed  Google Scholar 

  119. Cullinan, S. B. et al. Nrf2 is a direct PERK substrate and effector of PERK-dependent cell survival. Mol. Cell. Biol. 23, 7198–7209 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  120. Lu, P. D. et al. Cytoprotection by pre-emptive conditional phosphorylation of translation initiation factor 2. EMBO J. 23, 169–179 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  121. Qiu, Y. et al. A crucial role for RACK1 in the regulation of glucose-stimulated IRE1α activation in pancreatic β cells. Sci. Signal. 3, ra7 (2010).

    PubMed  PubMed Central  Google Scholar 

  122. Moreno, J. A. et al. Sustained translational repression by eIF2α-P mediates prion neurodegeneration. Nature 485, 507–511 (2012).

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  123. Moreno, J. A. et al. Oral treatment targeting the unfolded protein response prevents neurodegeneration and clinical disease in prion-infected mice. Sci. Transl. Med. 5, 206ra138 (2013).

    PubMed  Google Scholar 

  124. Halliday, M. et al. Partial restoration of protein synthesis rates by the small molecule ISRIB prevents neurodegeneration without pancreatic toxicity. Cell Death Dis. 6, e1672 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  125. Krishnamoorthy, J. et al. Evidence for eIF2α phosphorylation-independent effects of GSK2656157, a novel catalytic inhibitor of PERK with clinical implications. Cell Cycle 13, 801–806 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors apologize to those researchers whose references they were unable to acknowledge due to space limitations. R.J.K. is supported by US National Institutes of Health grants R37 DK042394, R01 DK088227, R01 DK103183 and CA128814.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Randal J. Kaufman.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Additional information

Reprints and permissions information is available at www.nature.com/reprints.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, M., Kaufman, R. Protein misfolding in the endoplasmic reticulum as a conduit to human disease. Nature 529, 326–335 (2016). https://doi.org/10.1038/nature17041

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nature17041

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing