Abstract
Observing marine mammal (MM) populations continuously in time and space over the immense ocean areas they inhabit is challenging but essential for gathering an unambiguous record of their distribution, as well as understanding their behaviour and interaction with prey species1,2,3,4,5,6. Here we use passive ocean acoustic waveguide remote sensing (POAWRS)7,8 in an important North Atlantic feeding ground9,10 to instantaneously detect, localize and classify MM vocalizations from diverse species over an approximately 100,000 km2 region. More than eight species of vocal MMs are found to spatially converge on fish spawning areas containing massive densely populated herring shoals at night-time11,12,13,14,15,16 and diffuse herring distributions during daytime. We find the vocal MMs divide the enormous fish prey field into species-specific foraging areas with varying degrees of spatial overlap, maintained for at least two weeks of the herring spawning period. The recorded vocalization rates are diel (24 h)-dependent for all MM species, with some significantly more vocal at night and others more vocal during the day. The four key baleen whale species of the region: fin, humpback, blue and minke have vocalization rate trends that are highly correlated to trends in fish shoaling density and to each other over the diel cycle. These results reveal the temporospatial dynamics of combined multi-species MM foraging activities in the vicinity of an extensive fish prey field that forms a massive ecological hotspot, and would be unattainable with conventional methodologies. Understanding MM behaviour and distributions is essential for management of marine ecosystems and for accessing anthropogenic impacts on these protected marine species1,2,3,4,5,17,18.
This is a preview of subscription content, access via your institution
Access options
Subscribe to this journal
Receive 51 print issues and online access
$199.00 per year
only $3.90 per issue
Buy this article
- Purchase on SpringerLink
- Instant access to full article PDF
Prices may be subject to local taxes which are calculated during checkout
Similar content being viewed by others
References
Tittensor, D. P. et al. Global patterns and predictors of marine biodiversity across taxa. Nature 466, 1098–1101 (2010)
Schofield, O. et al. How do polar marine ecosystems respond to rapid climate change? Science 328, 1520–1523 (2010)
Block, B. A. et al. Tracking apex marine predator movements in a dynamic ocean. Nature 475, 86–90 (2011)
Noad, M., Cato, D., Bryden, M., Jenner, M. & Jenner, K. Cultural revolution in whale songs. Nature 408, 537 (2000)
Miller, P. J., Biassoni, N., Samuels, A. & Tyack, P. L. Whale songs lengthen in response to sonar. Nature 405, 903 (2000)
Kaschner, K., Quick, N. J., Jewell, R., Williams, R. & Harris, C. M. Global coverage of cetacean line-transect surveys: status quo, data gaps and future challenges. PLoS ONE 7, e44075 (2012)
Gong, Z. et al. Ecosystem scale acoustic sensing reveals humpback whale behavior synchronous with herring spawning processes and re-evaluation finds no effect of sonar on humpback song occurrence in the Gulf of Maine in fall 2006. PLoS ONE 9, e104733 (2014)
Tran, D. D. et al. Using a coherent hydrophone array for observing sperm whale range, classification, and shallow-water dive profiles. J. Acoust. Soc. Am. 135, 3352–3363 (2014)
Overholtz, W. J. & Link, J. S. Consumption impacts by marine mammals, fish, and seabirds on the Gulf of Maine–Georges Bank Atlantic herring (Clupea harengus) complex during the years 1977–2002. ICES J. Mar. Sci. 64, 83–96 (2007)
Waring, G. T., Josephson, E., Maze-Foley, K. & Rosel, P. E. U.S. Atlantic and Gulf of Mexico Marine Mammal Stock Assessments 2014. NOAA Tech Memo NMFS NE Vol. 231 (2014)
Makris, N. C. et al. Fish population and behavior revealed by instantaneous continental shelf-scale imaging. Science 311, 660–663 (2006)
Makris, N. C. et al. Critical population density triggers rapid formation of vast oceanic fish shoals. Science 323, 1734–1737 (2009)
Gong, Z. et al. Low-frequency target strength and abundance of shoaling Atlantic herring (Clupea harengus) in the Gulf of Maine during the ocean acoustic waveguide remote sensing 2006 experiment. J. Acoust. Soc. Am. 127, 104–123 (2010)
Jagannathan, S. et al. Ocean acoustic waveguide remote sensing (OAWRS) of marine ecosystems. Mar. Ecol. Prog. Ser. 395, 137–160 (2009)
Jech, J. M. & Stroman, F. Aggregative patterns of pre-spawning Atlantic herring on Georges Bank from 1999–2010. Aquat. Living Resour. 25, 1–14 (2012)
54th Northeast Regional Stock Assessment Workshop (54th SAW) Assessment Report. Part A. Atlantic herring stock assessment for 2012. US Dept Commer, Northeast Fish Sci. Cent. Ref. Doc. 12–18; 600 p. http://www.nefsc.noaa.gov/publications/ (2012)
deYoung B., Heath, M., Werner, F., Chai, F., Megrey, B. & Monfray, P. Challenges of modeling ocean basin ecosystems. Science 304, 1463–1466 (2004)
Overholtz, W. & Link, J. A simulation model to explore the response of the Gulf of Maine food web to large-scale environmental and ecological changes. Ecol. Modell. 220, 2491–2502 (2009)
Kay, S. M. Fundamentals of statistical signal processing, Vol. II: Detection Theory. (Prentice Hall, 1998)
Mayo, C. A. & Marx, M. K. Surface foraging behavior of the North Atlantic right whale, Eubalaena glacialis, and associated zooplankton characteristics. Can. J. Zool. 68, 2214–2220 (1990)
Dolphin, W. F. Prey densities and foraging of humpback whales, Megaptera novaeangliae. Experientia 43, 468–471 (1987)
Sims, D. W. & Quayle, V. A. Selective foraging behavior of basking sharks on zooplankton in a small scale front. Nature 393, 460–464 (1998)
Baumgartner, M. F. & Frantantoni, D. M. Diel periodicity in both sei whale vocalization rates and the vertical migration of their copepod prey observed from ocean gliders. Limnol. Oceanogr. 53, 2197–2209 (2008)
Nøttestad, L., Fern, A., Mackinson, S., Pitcher, T. & Misund, O. A. How whales influence herring school dynamics in a cold-front area of the Norwegian Sea. ICES J. Mar. Sci. 59, 393–400 (2002)
Janik, V. M. Whistle matching in wild bottlenose dolphins (Tursiops truncatus). Science 289, 1355–1357 (2000)
Berchok, C. L., Bradley, D. L. & Gabrielson, T. B. St. Lawrence blue whale vocalizations revisited: characterization of calls detected from 1998 to 2001. J. Acoust. Soc. Am. 120, 2340–2354 (2006 )
Wiggins, S. M., Oleson, E. M., McDonald, M. A. & Hildebrand, J. A. Blue whale (Blaenoptera musculus) diel call patterns offshore of Southern California. Aquat. Mamm. 31, 161–168 (2005)
Similä, T. Sonar observations of killer whales (Orcinus orca) feeding on herring schools. Aquat. Mamm. 23, 119–126 (1997)
Wiirsig, B. Delphinid foraging strategies in Dolphin cognition and Behavior: a Comparative Approach 347–359 (Psychology Press, 1986)
Buckland, S. T. et al. Introduction to Distance Sampling: Estimating Abundance of Biological Population (Oxford Univ. Press, 2001)
Becker, K. & Preston, J. R. The ONR five octave research array (FORA) at Penn State. Proc. OCEANS ‘03 5, 26072610 (2003)
Overholtz, W. J. et al. Stock assessment of the Gulf of Maine-Georges Bank Atlantic herring complex, 2003. Northeast Fisheries Science Center References Document 4, 1–290 (2004)
Melvin, G. D. & Stephenson, R. L. The dynamics of a recovering fish stock: Georges Bank herring. ICES J. Mar. Sci. 64, 69–82 (2007)
Read, A. J. & Brownstein, C. R. Considering other consumers: fisheries, predators, and Atlantic herring in the Gulf of Maine. Conserv. Ecol. 7, 2 (2003)
Oppenheim, A. V., Willsky, A. S. & Nawab, S. H. Signals and Systems (PrenticeHall, 1997)
Johnson, D. H. & Dudgeon, D. E. Array Signal Processing: Concepts and Techniques (Simon & Schuster, 1992)
Baumgartner, M. F. et al. A generalized baleen whale call detection and classification system. J. Acoust. Soc. Am. 129, 2889–2902 (2011)
Shapiro, A. D. & Wang, C. A versatile pitch tracking algorithm: From human speech to killer whale vocalizations. J. Acoust. Soc. Am. 126, 451–459 (2009)
Wang, C. & Seneff, S. Robust pitch tracking for prosodic modeling in telephone speech. Proceedings of the IEEE International Conference on Acoustics, Speech, and Signal Processing (IEEE, Piscataway, NJ) 1143–1145 (2000)
Duda, R. O., Hart, P. E. & Stork, D. G. Pattern Classification 2nd edn (John Wiley & Sons, 2001)
Watkins, W. A., Tyack, P., Moore, K. E. & Bird, J. E. The 20-Hz signals of finback whales (Balaenoptera physalus). J. Acoust. Soc. Am. 82, 1901–1912 (1987)
Edds, P. L. Characteristics of finback Balaenoptera physalus vocalizations in the St. Lawrence Estuary. Bioacoustics 1, 131–149 (1988)
Nieukirk, S. L. et al. Sounds from airguns and fin whales recorded in the mid-Atlantic Ocean, 1999–2009. J. Acoust. Soc. Am. 131, 1102–1112 (2012)
Thompson, P. O., Findley, L. T. & Vidal, O. 20 Hz pulses and other vocalizations of fin whales, Balaenoptera physalus, in the Gulf of California, Mexico. J. Acoust. Soc. Am. 92, 3051–3057 (1992)
McDonald, M. A., Hildebrand, J. A. & Webb, S. C. Blue and fin whales observed on a seafloor array in the Northeast Pacific. J. Acoust. Soc. Am. 98, 712–721 (1995)
Croll, D. A. et al. Only male fin whales sing loud songs. Nature 417, 809 (2002)
Oleson, E. M. Behavioral context of call production by eastern North Pacific blue whales. Mar. Ecol. Prog. Ser. 330, 269–284 (2007)
McDonald, M. A., Calambokidis, J., Teranishi, A. M. & Hildebrand, J. A. The acoustic calls of blue whales off California with gender data. J. Acoust. Soc. Am. 109, 1728–1735 (2001)
Thode, A. M., D’Spain, G. L. & Kuperman, W. A. Matched-field processing, geoacoustic inversion, and source signature recovery of blue whale vocalizations. J. Acoust. Soc. Am. 107, 1286–1300 (2000)
Di Iorio, L. & Clark, C. W. Exposure to seismic survey alters blue whale acoustic communication. Biol. Lett. 6, 51–54 (2010)
Rankin, S. & Barlow, J. Vocalizations of the sei whale Balaenoptera borealis off the Hawaiian Islands. Bioacoustics 16, 137–145 (2007)
Baumgartner, M. F. et al. Low frequency vocalizations attributed to sei whales (Balaenoptera borealis). J. Acoust. Soc. Am. 124, 1339–1349 (2008)
Edds-Walton, P. L. Vocalizations of minke whales Balaenoptera acutorostrata in the St. Lawrence Estuary. Bioacoustics 11, 31–50 (2000)
Mellinger, D. K., Carson, C. D. & Clark, C. W. Characteristics of minke whale (Balaenoptera acutorostrata) pulse trains recorded near Puerto Rico. Mar. Mamm. Sci. 16, 739–756 (2000)
Risch, D. et al. Minke whale acoustic behavior and multi-year seasonal and diel vocalization patterns in Massachusetts Bay, USA. Mar. Ecol. Prog. Ser. 489, 279–295 (2013)
Payne, R. S. & McVay, S. Songs of humpback whales. Science 173, 585–597 (1971)
Cerchio, S. & Dahlheim, M. Variation in feeding vocalizations of humpback whales (Megaptera novaeangliae) from southeast Alaska. Bioacoustics 11, 277–295 (2001)
Cato, D., McCauley, R., Rogers, T. & Noad, M. Passive acoustics for monitoring marine animals-progress and challenges. Proceedings of Acoustics 2006, 453–460 (2006)
Mattila, D. K., Guinee, L. N. & Mayo, C. A. Humpback whale songs on a North Atlantic feeding ground. J. Mamm. 68, 880–883 (1987)
McSweeney, D. J., Chu, K. C., Dolphin, W. F. & Guinee, L. N. North Pacific humpback whale songs: a comparison of southeast Alaskan feeding ground songs with Hawaiian wintering ground songs . Mar. Mamm. Sci. 5, 139–148 (1989)
Clark, C. W. & Clapham, P. J. Acoustic monitoring on a humpback whale (Megaptera novaeangliae) feeding ground shows continual singing into late spring. Proc. Royal Soc. B 271, 1051–1057 (2004)
Watkins, W. A. & Schevill, W. E. Sperm whale codas. J. Acoust. Soc. Am. 62, 1485–1490 (1977)
Tiemann, C. O., Thode, A. M., Straley, J., O’Connell, V. & Folkert, K. Three-dimensional localization of sperm whales using a single hydrophonea. J. Acoust. Soc. Am. 120, 2355–2365 (2006)
Nemiroff, L. & Whitehead, H. Structural characteristics of pulsed calls of long-finned pilot whales Globicephala melas. Bioacoustics 19, 67–92 (2009)
Weilgart, L. S. & Whitehead, H. Vocalizations of the North Atlantic pilot whale (Globicephala melas) as related to behavioral contexts. Behav. Ecol. Sociobiol. 26, 399–402 (1990)
Tyson, R. B., Nowacek, D. P. & Miller, P. J. Nonlinear phenomena in the vocalizations of North Atlantic right whales (Eubalaena glacialis) and killer whales (Orcinus orca). J. Acoust. Soc. Am. 122, 1365–1373 (2007)
Simon, M., Ugarte, F., Wahlberg, M. & Miller, L. A. Icelandic killer whales Orcinus orca use a pulsed call suitable for manipulating the schooling behaviour of herring Clupea harengus. Bioacoustics 16, 57–74 (2006)
Filatova, O. A. et al. Call diversity in the North Pacific killer whale populations: implications for dialect evolution and population history. Anim. Behav. 83, 595–603 (2012)
Oliveira, C., Wahlberg, M., Johnson, M., Miller, P. J. & Madsen, P. T. The function of male sperm whale slow clicks in a high latitude habitat: communication, echolocation, or prey debilitation? J. Acoust. Soc. Am. 133, 3135–3144 (2013)
Ford, J. K. Acoustic behavior of resident killer whales (Orcinus orca) off Vancouver Island, British Columbia. Can. J. Zool. 67, 727–745 (1989)
Gong, Z., Tran, D. & Ratilal, P. Comparing passive source localization and tracking approaches with a towed horizontal receiver array in an ocean waveguide. J. Acoust. Soc. Am. 134, 3705–3720 (2013)
Lee, S. & Makris, N. C. The array invariant. J. Acoust. Soc. Am. 119, 336–351 (2006)
Gong, Z., Ratilal, P. & Makris, N. C. Simultaneous localization of multiple broadband non-impulsive acoustic sources in an ocean waveguide using the array invariant. J. Acoust. Soc. Am. 138, 2649–2667 (2015)
Tran, D., Andrews, M. & Ratilal, P. Probability distribution for energy of saturated broadband ocean acoustic transmission: results from Gulf of Maine 2006 experiment. J. Acoust. Soc. Am. 132, 3659–3672 (2012)
Jain, A., Ignisca, A., Yi, D., Ratilal, P. & Makris, N. Feasibility of ocean acoustic waveguide remote sensing (OAWRS) of Atlantic cod with seafloor scattering limitations. Remote Sens. 6, 180–208 (2014)
Jagannathan, S., Kusel, E., Ratilal, P. & Makris, N. Scattering from extended targets in range-dependent fluctuating ocean-waveguides with clutter from theory and experiments. J. Acoust. Soc. Am. 132, 680–693 (2012)
Andrews, M., Chen, T. & Ratilal, P. Empirical dependence of acoustic transmission scintillation statistics on bandwidth, frequency and range in New Jersey continental shelf. J. Acoust. Soc. Am. 125, 111–124 (2009)
Collins, M. D. Generalization of the split-step Padé solution. J. Acoust. Soc. Am. 93, 1736–1742 (1983)
Ainslie, M. A. Neglect of bandwidth of Odontocetes echo location clicks biases propagation loss and single hydrophone population estimates. J. Acoust. Soc. Am. 134, 3506–3512 (2013)
Makris, N. C. The effect of saturated transmission scintillation on ocean-acoustic intensity measurements. J. Acoust. Soc. Am. 100, 769–783 (1996)
Bertsatos, I., Zanolin, M., Chen, T. R., Ratilal, P. & Makris, N. C. General second order covariance of Gaussian maximum likelihood estimate applied to passive source localization in a fluctuating ocean waveguide. J. Acoust. Soc. Am. 128, 2635–2651 (2010)
Thode, A. et al. Necessary conditions for a maximum likelihood estimate to become asymptotically unbiased and attain the Cramer-Rao lower bound Part II: range and depth localization of a sound source in an ocean waveguide. J. Acoust. Soc. Am. 112, 1890–1910 (2002)
Andrews, M., Gong, Z. & Ratilal, P. Effects of multiple scattering, attenuation and dispersion in waveguide sensing of fish. J. Acoust. Soc. Am. 130, 1253–1271 (2011)
DiFranco, J. V. & Rubin, W. L. Radar Detection (Artech House, 1980)
Bergmann, P. G., Yaspan, A., Gerjuoy, E., Major, J. K. & Wildt, R. Physics of Sound in the Sea (Gordon and Breach, 1968)
Urick, R. J. Principles of Underwater Sound 29–65 and 343–366 ( McGraw Hill, 1983)
Širovic´, A., Hildebrand, J. A. & Wiggins, S. M. Blue and fin whale call source levels and propagation range in Southern Ocean. J. Acoust. Soc. Am. 122, 1208–1215 (2007)
Weirathmueller, M. J., Wilcock, W. S. & Soule, D. C. Source levels of fin whale 20 Hz pulses measured in the Northeast Pacific Ocean. J. Acoust. Soc. Am. 133, 741–749 (2013)
Newhall, A. E., Lin, Y. T., Lynch, J. F., Baumgartner, M. F. & Gawarkiewicz, G. G. Long distance passive localization of vocalizing sei whales using an acoustic normal mode approach. J. Acoust. Soc. Am. 131, 1814–1825 (2012)
Jensen, F. B., Kuperman, W. A., Porter, M. B. & Schmidt, H. Computational Ocean Acoustics 708–713 (Springer-Verlag, 2011)
Clay, C. S. & Medwin, H. Acoustical Oceanography 494–501 (John Wiley, 1977)
Burdic, W. S. Underwater Acoustic System Analysis 322–360 (Prentice-Hall, 1984)
Küsel E. T. et al. Cetacean population density estimation from single fixed sensors using passive acoustics. J. Acoust. Soc. Am. 129, 3610–3622 (1983)
Marques, T. A., Thomas, L., Ward, J., DiMarzio, N. & Tyack, P. L. Estimating cetacean population density using fixed passive acoustic sensors: an example with Blainvilles beaked whales. J. Acoust. Soc. Am. 125, 1982–1994 (2009)
Barlow, J. & Taylor, B. L. Estimates of sperm whale abundance in the northeastern temperate Pacific from a combined acoustic and visual survey. Mar. Mamm. Sci. 21, 429–445 (2005)
Martin, S. W. et al. Estimating minke whale (Balaenoptera acutorostrata) boing sound density using passive acoustic sensors. Mar. Mamm. Sci. 29, 142–158 (2013)
Marques, T. A., Munger, L., Thomas, L., Wiggins, S. & Hildebrand, J. A. Estimating North Pacific right whale Eubalaena japonica density using passive acoustic cue counting. Endanger. Species Res. 13, 163–172 (2011)
Marques, T. A. et al. Estimating animal population density using passive acoustics. Biol. Rev. Camb. Philos. Soc. 88, 287–309 (2013)
Battista, T. A., Clark, R. D. & Pittman, S. An ecological characterization of the Stellwagen Bank national marine sanctuary region: oceanographic, biogeographic, and contaminants assessment. US Department of Commerce, National Oceanic and Atmospheric Administration, National Ocean Service, Center for Coastal Monitoring and Assessment, 265282 (2006)
Stark, H. & Woods, J. Probability, Statistics, and Random Processes for Engineers (Prentice Hall, 2011)
Acknowledgements
Permission for this National Oceanographic Partnership Program experiment was given in the Office of Naval Research document 5090 Ser 321RF/096/06. This research was supported by the US National Science Foundation, the US Office of Naval Research (Ocean Acoustics Program), the National Oceanographic Partnership Program, the US Presidential Early Career Award for Scientists and Engineers, the Alfred P. Sloan Foundation, the Census of Marine Life, and Northeastern University. The authors thank J. R. Preston for assistance with GOM 2006 experiment, D. H. Cato and P. L. Tyack for discussions.
Author information
Authors and Affiliations
Contributions
Overall concept and approach conceived and developed by P.R. Implementation, data analysis and interpretation directed by P.R., conducted by D.W., W.H., H.G. and D.D.T. with contributions from A.D.J., D.H.Y. and Z.G. The GOM 2006 experiment data collection was led by N.C.M., P.R. and J.M.J. The article was written by P.R. with contributions from D.W., W.H., J.M.J., O.R.G. and N.C.M. All authors read and discussed the manuscript.
Corresponding author
Ethics declarations
Competing interests
The authors declare no competing financial interests.
Extended data figures and tables
Extended Data Figure 1 Spectrograms of MM vocalizations.
a–h, Beamformed spectrograms of typical repetitive vocalizations from diverse MM species observed using the POAWRS receiver array in the Gulf of Maine from 19 September to 6 October 2006.
Extended Data Figure 2 Coherent array processing enhances SNR.
a, b, Compare single hydrophone measured spectrogram (a) with spectrogram after coherent beamforming (b) with 64-element sub-aperture of POAWRS 160-element hydrophone array. The song vocalization from a humpback individual roughly 35 km away from the POAWRS receiver array recorded on 2 October 2006 at 23:48:45 EDT is enhanced by 18 dB above the background noise after beamforming in b where whale bearing is −64.16° from array broadside.
Extended Data Figure 3 Pitch-tracks of baleen and toothed whales.
a, Pitch-tracks of repetitive mysticete vocalizations in the 10 to 100 Hz range. Thick solid curves are the means of roughly 500 to 1,000 vocalizations of each type. Mean instantaneous bandwidth of the pitch-tracks are indicated by the dashed curve. Even though blue and sei type I calls have some overlapping bandwidth, they can be well separated using the upper frequency fU and slope df/dτ features (Extended Data Table 2). b, Mean pitch-track and instantaneous bandwidth of repetitive odontocete downsweep vocalizations in the 1 to 4 kHz range.
Extended Data Figure 4 Daily POAWRS measured MM vocalization bearings.
a, b, MM vocalization bearings from diverse species measured by POAWRS receiver array on 1 October 2006 (a) and 2 October 2006 (b). The bearings are measured from true North in clockwise direction with respect to the instantaneous spatial locations of the receiver array centre. The techniques used here for resolving source bearing ambiguity about the horizontal line-array axis are provided in Methods section 3. The shaded bars on the x axis indicate the operation time periods of the receiver array.
Extended Data Figure 5 Daily humpback vocalization repertoire.
a–c, Bearings and repertoire of humpback vocalizations measured by POAWRS receiver array on 1 October 2006 (a), 2 October 2006 (b), and 3 October 2006 (c). The ‘meow’, ‘bow’, and ‘feeding’ call characteristics are provided in ref. 7.
Extended Data Figure 6 Diel Atlantic herring shoaling areal population densities.
Measured herring shoaling areal population densities (ranging from 0.2 fish per m2 to over 10 fish per m2) determined from OAWRS12,13 survey in the Gulf of Maine from 26 September 2006 to 6 October 2006, upon calibration with tens of thousands of coincident and co-located conventional ultrasonic fisheries echosounding measurements, combined with trawl sampling for identity and biological–physiological characterization of fish populations15,16. The mean diffuse herring density of 0.053 fish per m2 is determined from conventional ultrasonic fisheries echosounding. The bathymetric data (contours shown in grey) were obtained from the US National Centers for Environmental Information.
Extended Data Figure 7 Diel MM call rate and herring shoal areal population density time series.
Mean diel call rates for sei whales and odontocetes in general are not correlated to the diel Atlantic herring shoal mean areal population density. The error bars indicate standard deviations obtained from averaging the time series over multiple diel cycles from 26 September 2006 to 6 October 2006. The period from roughly 2–6 EDT contains a data gap.
Extended Data Figure 8 Cumulative diurnal MM call rate distribution.
Cumulative diurnal MM vocalization rate distribution and azimuthally-averaged POAWRS MM POD as a function of minimum distance from diurnal herring shoaling areas. The e-folding distances of the cumulative MM vocalization rate distributions decrease from day (shown here) to night (in Fig. 3b) by 27.3 to 7 km (blue), 9.3 to 3.9 km (fin), 51.7 to 3.5 km (humpback), 22.5 to 0 km (minke), 11.2 to 8.1 km (sei), and 22.4 to 5.5 km (odontocetes). The percentage of vocalizations that fully overlap with herring shoaling areas increase from day to night by 0% to 18% (blue), 14% to 40% (fin), 6% to 44% (humpback), 0% to 71% (minke), and 5% to 24% (sei), but decrease by 36% to 29% (odontocetes).
Supplementary information
Supplementary Information
This file contains Supplementary Text, Supplementary Figures 1-6, Supplementary Table 1 and Supplementary References. (PDF 2626 kb)
Rights and permissions
About this article
Cite this article
Wang, D., Garcia, H., Huang, W. et al. Vast assembly of vocal marine mammals from diverse species on fish spawning ground. Nature 531, 366–370 (2016). https://doi.org/10.1038/nature16960
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1038/nature16960
This article is cited by
-
Predicting the Effects of Random Ocean Dynamic Processes on Underwater Acoustic Sensing and Communication
Scientific Reports (2020)
-
Fine scale spatial variability in the influence of environmental cycles on the occurrence of dolphins at coastal sites
Scientific Reports (2019)
-
Remote sensing of zooplankton swarms
Scientific Reports (2019)
-
Long-Term Monitoring of Dolphin Biosonar Activity in Deep Pelagic Waters of the Mediterranean Sea
Scientific Reports (2017)
Comments
By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.