Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Palladium-catalysed transannular C–H functionalization of alicyclic amines


Discovering pharmaceutical candidates is a resource-intensive enterprise that frequently requires the parallel synthesis of hundreds or even thousands of molecules. C–H bonds are present in almost all pharmaceutical agents. Consequently, the development of selective, rapid and efficient methods for converting these bonds into new chemical entities has the potential to streamline pharmaceutical development1,2,3,4. Saturated nitrogen-containing heterocycles (alicyclic amines) feature prominently in pharmaceuticals, such as treatments for depression (paroxetine, amitifadine), diabetes (gliclazide), leukaemia (alvocidib), schizophrenia (risperidone, belaperidone), malaria (mefloquine) and nicotine addiction (cytisine, varenicline)5. However, existing methods for the C–H functionalization of saturated nitrogen heterocycles, particularly at sites remote to nitrogen, remain extremely limited6,7. Here we report a transannular approach to selectively manipulate the C–H bonds of alicyclic amines at sites remote to nitrogen. Our reaction uses the boat conformation of the substrates to achieve palladium-catalysed amine-directed conversion of C–H bonds to C–C bonds on various alicyclic amine scaffolds. We demonstrate this approach by synthesizing new derivatives of several bioactive molecules, including varenicline.

This is a preview of subscription content, access via your institution

Relevant articles

Open Access articles citing this article.

Access options

Rent or buy this article

Prices vary by article type



Prices may be subject to local taxes which are calculated during checkout

Figure 1: Relevance of alicyclic amines and strategies for their late-stage functionalization.
Figure 2: Design and realization of transannular C–H activation of alicyclic amines.
Figure 3: Transannular C–H arylation of 3-azabicyclo[3.1.0]hexane core.
Figure 4: Transannular C–H arylation of alicyclic amines.


  1. Wencel-Delord, J. & Glorius, F. C–H bond activation enables the rapid construction and late stage diversification of functional molecules. Nature Chem . 5, 369–375 (2013)

    Article  CAS  ADS  Google Scholar 

  2. McMurray, L., O’Hara, F. & Gaunt, M. J. Recent developments in natural product synthesis using metal-catalysed C–H bond functionalization. Chem. Soc. Rev. 40, 1885–1898 (2011)

    Article  CAS  Google Scholar 

  3. Yamaguchi, J., Yamaguchi, A. D. & Itami, K. C–H bond functionalization: emerging synthetic tools for natural products and pharmaceuticals. Angew. Chem. Int. Ed. 51, 8960–9009 (2012)

    Article  CAS  Google Scholar 

  4. Godula, K. & Sames, D. C–H bond functionalization in complex organic synthesis. Science 312, 67–72 (2006)

    Article  CAS  ADS  Google Scholar 

  5. Taylor, R. D., MacCoss, M. & Lawson, A. D. G. Rings in drugs. J. Med. Chem. 57, 5845–5859 (2014)

    Article  CAS  Google Scholar 

  6. Asensio, G., Gonzalez-Nunez, M. E., Bernardini, C. B., Mello, R. & Adam, W. Regioselective oxyfunctionalization of unactivated tertiary and secondary C–H bonds of alkylamines by methyl(trifluomethyl)dioxirane in acid medium. J. Am. Chem. Soc. 115, 7250–7253 (1993)

    Article  CAS  Google Scholar 

  7. Affron, D. P., Davis, O. A. & Bull, J. A. Regio- and stereospecific synthesis of C-3 functionalized proline derivatives by palladium catalyzed directed C(sp3)–H arylation. Org. Lett. 16, 4956–4959 (2014)

    Article  CAS  Google Scholar 

  8. Lyons, T. W. & Sanford, M. S. Palladium-catalyzed ligand-directed C–H functionalization reactions. Chem. Rev. 110, 1147–1169 (2010)

    Article  CAS  Google Scholar 

  9. Chen, X., Engle, K. M., Wang, D. & Yu, J.-Q. Palladium(II)-catalyzed C–H activation/C–C cross-coupling reactions: versatility and practicality. Angew. Chem. Int. Ed. 48, 5094–5115 (2009)

    Article  CAS  Google Scholar 

  10. Mitchell, E. A., Peschiulli, A., Lefevre, N., Meerpoel, L. & Maes, B. U. W. Direct α-functionalization of saturated cyclic amine. Chemistry 18, 10092–10142 (2012)

    Article  CAS  Google Scholar 

  11. Pastine, S. J., Gribkov, D. V. & Sames, D. sp3 C–H bond arylation directed by amidine protecting group: α-arylation of pyrrolidines and piperidines. J. Am. Chem. Soc. 128, 14220–14221 (2006)

    Article  CAS  Google Scholar 

  12. He, J., Hamann, L. G., Davies, H. M. L. & Beckwith, R. E. J. Late-stage C–H functionalization of complex alkaloids and drug molecules via intermolecular rhodium-carbenoid insertion. Nature Commun . 6, 5943 (2015)

    Article  ADS  Google Scholar 

  13. Shi, L. & Xia, W. Photoredox functionalization of C–H bonds adjacent to a nitrogen atom. Chem. Soc. Rev. 41, 7687–7697 (2012)

    Article  CAS  Google Scholar 

  14. Spangler, J. E., Kobayashi, Y., Verma, P., Wang, D.-H. & Yu, J.-Q. α-Arylation of saturated azacycles and N-methylamines via palladium(II)-catalyzed C(sp3)–H coupling. J. Am. Chem. Soc. 137, 11876–11879 (2015)

    Article  CAS  Google Scholar 

  15. McNally, A., Haffemayer, B., Collins, B. S. L. & Gaunt, M. J. Palladium-catalysed C–H activation of aliphatic amines to give strained nitrogen heterocycles. Nature 510, 129–133 (2014)

    Article  CAS  ADS  Google Scholar 

  16. Lee, M. & Sanford, M. S. Platinum-catalyzed terminal-selective C(sp3)–H oxidation of aliphatic amines. J. Am. Chem. Soc. 137, 12796–12799 (2015)

    Article  CAS  Google Scholar 

  17. Bercaw, J. E. et al. Robotic lepidoptery: structural characterization of (mostly) unexpected palladium complexes obtained from high-throughput catalyst screening. Organometallics 28, 5017–5024 (2009)

    Article  CAS  Google Scholar 

  18. Cui, W. et al. Palladium-catalyzed remote C(sp3)–H arylation of 3-pinanamine. Org. Lett. 16, 4288–4291 (2014)

    Article  CAS  Google Scholar 

  19. Giri, R., Chen, X. & Yu, J.-Q. Palladium-catalyzed asymmetric iodination of unactivated C–H bonds under mild conditions. Angew. Chem. Int. Ed. 44, 2112–2115 (2005)

    Article  CAS  Google Scholar 

  20. Rouquet, G. & Chatani, N. Catalytic functionalization of C(sp2)–H and C(sp3)–H bonds by using bidentate directing groups. Angew. Chem. Int. Ed. 52, 11726–11743 (2013)

    Article  CAS  Google Scholar 

  21. Wasa, M. et al. Ligand-enabled methylene C(sp3)–H bond activation with a Pd(II) catalyst. J. Am. Chem. Soc. 134, 18570–18572 (2012)

    Article  CAS  Google Scholar 

  22. He, J. et al. Ligand-controlled C(sp3)–H arylation and olefination in synthesis of unnatural chiral α–amino acids. Science 343, 1216–1220 (2014)

    Article  CAS  ADS  Google Scholar 

  23. Zaitsev, V. G., Shabashov, D. & Daugulis, O. Highly regioselective arylation of sp3 C–H bonds catalyzed by palladium acetate. J. Am. Chem. Soc. 127, 13154–13155 (2005)

    Article  CAS  Google Scholar 

  24. Nadres, E. T., Santos, G. I. F., Shabashov, S. & Daugulis, O. Scope and limitations of auxiliary-assisted, palladium-catalyzed arylation and alkylation of sp2 and sp3 C–H bonds. J. Org. Chem. 78, 9689–9714 (2013)

    Article  CAS  Google Scholar 

  25. Lafrance, M. & Fagnou, K. Palladium-catalyzed benzene arylation: incorporation of catalytic pivalic acid as a proton shuttle and a key element in catalyst design. J. Am. Chem. Soc. 128, 16496–16497 (2006)

    Article  CAS  Google Scholar 

  26. Beer, B. et al. DOV 216,303, a “triple” reuptake inhibitor: safety, tolerability, and pharmacokinetic profile. J. Clin. Pharmacol. 44, 1360–1367 (2004)

    Article  CAS  Google Scholar 

  27. Epstein, J. W. et al. 1-Aryl-3-azabicyclo[3.1.0]hexanes, a new series of nonnarcotic analgesic agents. J. Med. Chem. 24, 481–490 (1981)

    Article  CAS  Google Scholar 

  28. Juaristi, E. Conformational Behavior of Six-Membered Rings: Analysis, Dynamics, and Stereoelectronic Effects (Wiley–VCH, 1995)

  29. Hirsch, J. A. in Topics in Stereochemistry Vol. 1 (eds Allinger, N. L. & Eliel, E. L. ) 199–222 (John Wiley & Sons, 1967)

  30. Singer, R. A., McKinley, J. D., Barbe, G. & Farlow, R. A. Preparation of 1,5-methano-2,3,4,5-tetrahydro-1H-3-benzazepine via Pd-catalyzed cyclization. Org. Lett. 6, 2357–2360 (2004)

    Article  CAS  Google Scholar 

Download references


We acknowledge J. W. Kampf for X-ray crystallographic analyses of 4a, 11b, an analogue of 11g, 11h and 14a. J.T.T. was supported by an NIH post-doctoral fellowship (F32 GM109479). This work was supported by NIGMS grant GM073836. We acknowledge funding from NSF grant CHE-0840456 for X-ray instrumentation.

Author information

Authors and Affiliations



J.T.T., P.J.C. and N.I.S. discovered and developed the reaction. J.T.T., P.J.C. and M.S.S. conceived and designed the investigations. M.S.S. directed and supported the research. J.T.T., P.J.C. and M.S.S. wrote and revised the manuscript.

Corresponding author

Correspondence to Melanie S. Sanford.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Additional information

Metrical parameters for the structures are available free of charge from the Cambridge Crystallographic Data Centre under reference numbers CCDC-1401221, 1401222, 1440132, 1416579 and 1416516.

Supplementary information

Supplementary Information

This file contains Supplementary Text and Data – see contents page for details. (PDF 14418 kb)

PowerPoint slides

Rights and permissions

Reprints and Permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Topczewski, J., Cabrera, P., Saper, N. et al. Palladium-catalysed transannular C–H functionalization of alicyclic amines. Nature 531, 220–224 (2016).

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI:

This article is cited by


By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing