Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Non-classical correlations between single photons and phonons from a mechanical oscillator

Abstract

Interfacing a single photon with another quantum system is a key capability in modern quantum information science. It allows quantum states of matter, such as spin states of atoms1,2, atomic ensembles3,4 or solids5, to be prepared and manipulated by photon counting and, in particular, to be distributed over long distances. Such light–matter interfaces have become crucial to fundamental tests of quantum physics6 and realizations of quantum networks7. Here we report non-classical correlations between single photons and phonons—the quanta of mechanical motion—from a nanomechanical resonator. We implement a full quantum protocol involving initialization of the resonator in its quantum ground state of motion and subsequent generation and read-out of correlated photon–phonon pairs. The observed violation of a Cauchy–Schwarz inequality is clear evidence for the non-classical nature of the mechanical state generated. Our results demonstrate the availability of on-chip solid-state mechanical resonators as light–matter quantum interfaces. The performance we achieved will enable studies of macroscopic quantum phenomena8 as well as applications in quantum communication9, as quantum memories10 and as quantum transducers11,12.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Generation and read-out of photon–phonon pairs.
Figure 2: Mechanical quantum ground state preparation.
Figure 3: Non-classical photon–phonon correlations.

Similar content being viewed by others

References

  1. Wilk, T., Webster, S. C., Kuhn, A. & Rempe, G. Single-atom single-photon quantum interface. Science 317, 488–490 (2007)

    Article  CAS  ADS  Google Scholar 

  2. Stute, A. et al. Quantum-state transfer from an ion to a photon. Nature Photon. 7, 219–222 (2013)

    Article  CAS  ADS  Google Scholar 

  3. Kuzmich, A. et al. Generation of nonclassical photon pairs for scalable quantum communication with atomic ensembles. Nature 423, 731–734 (2003)

    Article  CAS  ADS  Google Scholar 

  4. van der Wal, C. H. et al. Atomic memory for correlated photon states. Science 301, 196–200 (2003)

    Article  CAS  ADS  Google Scholar 

  5. Yılmaz, S. T., Fallahi, P. & Imamoğlu, A. Quantum-dot-spin single-photon interface. Phys. Rev. Lett. 105, 033601 (2010)

    Article  ADS  Google Scholar 

  6. Hensen, B. et al. Loophole-free Bell inequality violation using electron spins separated by 1.3 kilometres. Nature 526, 682–686 (2015)

    Article  CAS  ADS  Google Scholar 

  7. Kimble, H. J. The quantum internet. Nature 453, 1023–1030 (2008)

    Article  CAS  ADS  Google Scholar 

  8. Romero-Isart, O. Quantum superposition of massive objects and collapse models. Phys. Rev. A 84, 052121 (2011)

    Article  ADS  Google Scholar 

  9. Stannigel, K., Rabl, P., Sørensen, A. S., Zoller, P. & Lukin, M. D. Optomechanical transducers for long-distance quantum communication. Phys. Rev. Lett. 105, 220501 (2010)

    Article  CAS  ADS  Google Scholar 

  10. Chang, D. E., Safavi-Naeini, A. H., Hafezi, M. & Painter, O. Slowing and stopping light using an optomechanical crystal array. New J. Phys. 13, 023003 (2011)

    Article  ADS  Google Scholar 

  11. Barzanjeh, S., Abdi, M., Milburn, G. J., Tombesi, P. & Vitali, D. Reversible optical-to-microwave quantum interface. Phys. Rev. Lett. 109, 130503 (2012)

    Article  ADS  Google Scholar 

  12. Bochmann, J., Vainsencher, A., Awschalom, D. D. & Cleland, A. N. Nanomechanical coupling between microwave and optical photons. Nature Phys. 9, 712–716 (2013)

    Article  CAS  ADS  Google Scholar 

  13. Wallquist, M., Hammerer, K., Rabl, P., Lukin, M. & Zoller, P. Hybrid quantum devices and quantum engineering. Phys. Scr. T137, 014001 (2009)

    Article  ADS  Google Scholar 

  14. Poot, M. & van der Zant, H. S. J. Mechanical systems in the quantum regime. Phys. Rep. 511, 273–335 (2012)

    Article  ADS  Google Scholar 

  15. Aspelmeyer, M., Kippenberg, T. J. & Marquardt, F. Cavity optomechanics. Rev. Mod. Phys. 86, 1391–1452 (2014)

    Article  ADS  Google Scholar 

  16. O’Connell, A. D. et al. Quantum ground state and single-phonon control of a mechanical resonator. Nature 464, 697–703 (2010)

    Article  ADS  Google Scholar 

  17. Meenehan, S. M. et al. Pulsed excitation dynamics of an optomechanical crystal resonator near its quantum ground state of motion. Phys. Rev. X 5, 041002 (2015)

    Google Scholar 

  18. Teufel, J. D. et al. Sideband cooling of micromechanical motion to the quantum ground state. Nature 475, 359–363 (2011)

    Article  CAS  ADS  Google Scholar 

  19. Chan, J. et al. Laser cooling of a nanomechanical oscillator into its quantum ground state. Nature 478, 89–92 (2011)

    Article  CAS  ADS  Google Scholar 

  20. Palomaki, T. A., Teufel, J. D., Simmonds, R. W. & Lehnert, K. W. Entangling mechanical motion with microwave fields. Science 342, 710–713 (2013)

    Article  CAS  ADS  Google Scholar 

  21. Wollman, E. E. et al. Quantum squeezing of motion in a mechanical resonator. Science 349, 952–955 (2015)

    Article  CAS  ADS  MathSciNet  Google Scholar 

  22. Safavi-Naeini, A. H. & Painter, O. Proposal for an optomechanical traveling wave phonon–photon translator. New J. Phys. 13, 013017 (2011)

    Article  ADS  Google Scholar 

  23. Safavi-Naeini, A. H., Alegre, T. P. M., Winger, M. & Painter, O. Optomechanics in an ultrahigh-Q two-dimensional photonic crystal cavity. Appl. Phys. Lett. 97, 181106 (2010)

    Article  ADS  Google Scholar 

  24. Duan, L. M., Lukin, M. D., Cirac, J. I. & Zoller, P. Long-distance quantum communication with atomic ensembles and linear optics. Nature 414, 413–418 (2001)

    Article  CAS  ADS  Google Scholar 

  25. Cabrillo, C., Cirac, J. I., García-Fernández, P. & Zoller, P. Creation of entangled states of distant atoms by interference. Phys. Rev. A 59, 1025–1033 (1998)

    Article  ADS  Google Scholar 

  26. Lee, K. C. et al. Entangling macroscopic diamonds at room temperature. Science 334, 1253–1256 (2011)

    Article  CAS  ADS  Google Scholar 

  27. Wu, L.-A., Kimble, H. J., Hall, J. L. & Wu, H. Generation of squeezed states by parametric down conversion. Phys. Rev. Lett. 57, 2520–2523 (1986)

    Article  CAS  ADS  Google Scholar 

  28. Cohen, J. D. et al. Phonon counting and intensity interferometry of a nanomechanical resonator. Nature 520, 522–525 (2015)

    Article  CAS  ADS  Google Scholar 

  29. Clauser, J. F. Experimental distinction between the quantum and classical field-theoretic predictions for the photoelectric effect. Phys. Rev. D 9, 853–860 (1974)

    Article  CAS  ADS  Google Scholar 

  30. Förtsch, M. et al. A versatile source of single photons for quantum information processing. Nature Commun. 4, 1818 (2013)

    Article  ADS  Google Scholar 

  31. Chan, J. et al. Optimized optomechanical crystal cavity with acoustic radiation shield. Appl. Phys. Lett. 101, 081115 (2012)

    Article  ADS  Google Scholar 

  32. Meenehan, S. M. et al. Silicon optomechanical crystal resonator at millikelvin temperatures. Phys. Rev. A 90, 011803(R) (2014)

    Article  ADS  Google Scholar 

  33. Fiore, V. et al. Storing optical information as a mechanical excitation in a silica optomechanical resonator. Phys. Rev. Lett. 107, 133601 (2011)

    Article  ADS  Google Scholar 

  34. Verhagen, E., Deléglise, S., Weis, S., Schliesser, A. & Kippenberg, T. J. Quantum-coherent coupling of a mechanical oscillator to an optical cavity mode. Nature 482, 63–67 (2012)

    Article  CAS  ADS  Google Scholar 

  35. Andrews, R. W. et al. Bidirectional and efficient conversion between microwave and optical light. Nature Phys. 10, 321–326 (2014)

    Article  CAS  ADS  Google Scholar 

  36. Bagci, T. et al. Optical detection of radio waves through a nanomechanical transducer. Nature 507, 81–85 (2014)

    Article  CAS  ADS  Google Scholar 

  37. Akram, U., Kiesel, N., Aspelmeyer, M. & Milburn, G. J. Single-photon opto-mechanics in the strong coupling regime. New J. Phys. 12, 083030 (2010)

    Article  ADS  Google Scholar 

  38. Natarajan, C. M., Tanner, M. G. & Hadfield, R. H. Superconducting nanowire single-photon detectors: physics and applications. Supercond. Sci. Technol. 25, 063001 (2012)

    Article  ADS  Google Scholar 

  39. Hofer, S. G., Wieczorek, W., Aspelmeyer, M. & Hammerer, K. Quantum entanglement and teleportation in pulsed cavity optomechanics. Phys. Rev. A 84, 052327 (2011)

    Article  ADS  Google Scholar 

  40. Mandel, L. & Wolf, E. Optical Coherence and Quantum Optics (Cambridge Univ. Press, 1995)

  41. Sangouard, N., Simon, C., de Riedmatten, H. & Gisin, N. Quantum repeaters based on atomic ensembles and linear optics. Rev. Mod. Phys. 83, 33–80 (2011)

    Article  ADS  Google Scholar 

  42. Zoller, P., Cirac, J. I., Duan, L. & Garcia-Ripoll, J. J. in Quantum Entanglement and Information Processing (eds Estève, D., Raimond, J.-M. & Dalibard, J.) Session 79 of Lecture Notes of the Les Houches Summer School 2003 Course 4 (Elsevier, 2004)

  43. Vanner, M. R., Aspelmeyer, M. & Kim, M. S. Quantum state orthogonalization and a toolset for quantum optomechanical phonon control. Phys. Rev. Lett. 110, 010504 (2013)

    Article  CAS  ADS  Google Scholar 

  44. Galland, C., Sangouard, N., Piro, N., Gisin, N. & Kippenberg, T. J. Heralded single-phonon preparation, storage, and readout in cavity optomechanics. Phys. Rev. Lett. 112, 143602 (2014)

    Article  ADS  Google Scholar 

  45. Zhao, B. et al. A millisecond quantum memory for scalable quantum networks. Nature Phys. 5, 95–99 (2009)

    Article  CAS  ADS  Google Scholar 

Download references

Acknowledgements

We thank K. Hammerer and S. Hofer for discussions, and T. Graziosi, J. Hill, J. Hoelscher-Obermaier, Y. Liu, L. Procopio, A. Safavi-Naeini, E. Schafler, G. Steele and W. Wieczorek for experimental support. We acknowledge assistance from the Kavli Nanolab Delft, in particular from M. Zuiddam and F. Dirne. This project was supported by the European Commission (cQOM, SIQS, IQUOEMS), a Foundation for Fundamental Research on Matter (FOM) Projectruimte grant (15PR3210), the Vienna Science and Technology Fund WWTF (ICT12-049), the European Research Council (ERC CoG QLev4G), and the Austrian Science Fund (FWF) under projects F40 (SFB FOQUS) and P28172. R.R. is supported by the FWF under project W1210 (CoQuS) and is a recipient of a DOC fellowship of the Austrian Academy of Sciences at the University of Vienna.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed substantially to the content of this paper.

Corresponding authors

Correspondence to Markus Aspelmeyer or Simon Gröblacher.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Extended data figures and tables

Extended Data Figure 1 Optomechanical device.

Shown is a scanning electron microscope image of a set of nanobeams, which are fabricated in silicon, as described in the text. Light is coupled into the central, adiabatically tapered waveguide through a lensed optical fibre (not shown) from the left of the image. The field then evanescently couples to each nanobeam (top and bottom). The two devices have slightly different resonance frequency, which makes it possible to distinguish them.

Extended Data Figure 2 Detailed experimental set-up.

See Methods section ‘Set-up’ for a description.

Extended Data Figure 3 Pump-probe measurement of the mechanical response.

We send in a brief, intense blue-detuned optical pulse (pump) and measure the mechanical response via a red-detuned optical probe pulse as a function of pump-probe time delay (δt). a, Long-term mechanical response. The result fits well with a simple exponential decay (red dashed line; see equation in the plot) with a damping time constant (Td) of 34.4 μs. The inset shows the same data/fit with a logarithmic scale on the x axis. CAS,0 is the extrapolated CASt = 0). b, Short-term mechanical response. The data are fitted to a simple exponential curve (green dashed line; see equation in the plot). The fitted time constant (τd) is 0.37 μs. The fit curve of the long-term response (red dashed line) projected to 0-μs delay is also shown for comparison. Because the pump-pulse energies were five times stronger than those of the write pulses in the correlation experiment, it is expected that the delayed heating occurs on a longer timescale, owing to the temperature dependence of the thermal conductivity of silicon32. Error bars in a and b represent a 68% confidence interval.

Source data

Extended Data Table 1 Counts of the cross-correlation measurements

PowerPoint slides

Source data

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Riedinger, R., Hong, S., Norte, R. et al. Non-classical correlations between single photons and phonons from a mechanical oscillator. Nature 530, 313–316 (2016). https://doi.org/10.1038/nature16536

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nature16536

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing