Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Uranium-mediated electrocatalytic dihydrogen production from water

Abstract

Depleted uranium is a mildly radioactive waste product that is stockpiled worldwide. The chemical reactivity of uranium complexes is well documented, including the stoichiometric activation of small molecules of biological and industrial interest such as H2O, CO2, CO, or N2 (refs 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11), but catalytic transformations with actinides remain underexplored in comparison to transition-metal catalysis12,13,14. For reduction of water to H2, complexes of low-valent uranium show the highest potential, but are known to react violently and uncontrollably forming stable bridging oxo or uranyl species15. As a result, only a few oxidations of uranium with water have been reported so far; all stoichiometric2,3,16,17. Catalytic H2 production, however, requires the reductive recovery of the catalyst via a challenging cleavage of the uranium-bound oxygen-containing ligand. Here we report the electrocatalytic water reduction observed with a trisaryloxide U(iii) complex [((Ad,MeArO)3mes)U] (refs 18 and 19)—the first homogeneous uranium catalyst for H2 production from H2O. The catalytic cycle involves rare terminal U(iv)–OH and U(v)=O complexes, which have been isolated, characterized, and proven to be integral parts of the catalytic mechanism. The recognition of uranium compounds as potentially useful catalysts suggests new applications for such light actinides. The development of uranium-based catalysts provides new perspectives on nuclear waste management strategies, by suggesting that mildly radioactive depleted uranium—an abundant waste product of the nuclear power industry—could be a valuable resource.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Electrochemical characterization of catalyst 1.
Figure 2: Independent synthesis and characterization of the uranium(IV) hydroxo complex [((Ad,MeArO)3mes)U–OH] (2–OH).
Figure 3: Postulated mechanism for the reduction of H2O by the U(iii) complex 1, based on EPR results.
Figure 4: X-band EPR spectrum of a frozen 10 mM toluene solution of 1 with a sub-stoichiometric amount of H2O.
Figure 5: Postulated electrocatalytic cycle for H2 generation from H2O in the presence of the homogeneous U(iii) catalyst [((Ad,MeArO)3mes)U] (1).

Similar content being viewed by others

Accession codes

Data deposits

Atomic coordinates and structure factors for the reported crystal structures have been deposited in the Cambridge Crystallographic Data Centre under the accession code CCDC-1413741 (for 2–OH from THF/n-pentane), CCDC-1401838 (for 2–OH from THF), and CCDC-1437872 (for [((Ad,tBuArO)3tacn)U(OH)]).

References

  1. Liddle, S. T. The renaissance of non-aqueous uranium chemistry. Angew. Chem. Int. Ed. 54, 8604–8641 (2015)

    Article  CAS  Google Scholar 

  2. Lukens, W. L., Beshouri, S. M., Blosch, L. L. & Andersen, R. A. Oxidative elimination of H2 from [Cp′2U(μ-OH)]2 to form [Cp′2U(μ-O)]2, where Cp′ is 1,3-(Me3C)2C5H3 or 1,3-(Me3Si)2C5H3 . J. Am. Chem. Soc. 118, 901–902 (1996)

    Article  CAS  Google Scholar 

  3. John, G. H. et al. The synthesis, structural, and spectroscopic characterization of uranium(IV) perrhenate complexes. Inorg. Chem. 44, 7606–7615 (2005)

    Article  CAS  Google Scholar 

  4. Schmidt, A.-C., Heinemann, F. W., Lukens, W. W. & Meyer, K. Molecular and electronic structure of dinuclear uranium bis-μ-oxo complexes with diamond core structural motifs. J. Am. Chem. Soc. 136, 11980–11993 (2014)

    Article  CAS  Google Scholar 

  5. Cooper, O. et al. Multimetallic cooperativity in uranium-mediated CO2 activation. J. Am. Chem. Soc. 136, 6716–6723 (2014)

    Article  CAS  Google Scholar 

  6. Summerscales, O. T., Cloke, F. G. N., Hitchcock, P. B., Green, J. C. & Hazari, N. Reductive cyclotetramerization of CO to squarate by a U(III) complex: the X-ray crystal structure of [(U (η-C8H6{SiiPr3-1,4}2)(η-C5Me4H)]2(μ-η2: η2-C4O4). J. Am. Chem. Soc. 128, 9602–9603 (2006)

    Article  CAS  Google Scholar 

  7. Frey, A. S. P. Cloke, F. G. N., Coles, M. P., Maron, L. & Davin, T. Facile conversion of CO/H2 into methoxide at a uranium(III) center. Angew. Chem. Int. Ed. 50, 6881–6883 (2011)

    Article  CAS  Google Scholar 

  8. Odom, A. L., Arnold, P. L. & Cummins, C. C. Heterodinuclear uranium/molybdenum dinitrogen complexes. J. Am. Chem. Soc. 120, 5836–5837 (1998)

    Article  CAS  Google Scholar 

  9. Evans, W. J., Kozimor, S. A. & Ziller, J. W. A monometallic f element complex of dinitrogen: (C5Me5)3U(η1-N2). J. Am. Chem. Soc. 125, 14264–14265 (2003)

    Article  CAS  Google Scholar 

  10. Fox, A. R., Bart, S. C., Meyer, K. & Cummins, C. C. Towards uranium catalysts. Nature 455, 341–349 (2008)

    Article  CAS  ADS  Google Scholar 

  11. La Pierre, H. S. & Meyer, K. in Progress in Inorganic Chemistry Vol. 58 (ed. Karlin, K. D. ) 303–415 (John Wiley & Sons, 2014)

  12. Tway, C. L. Process for preparing a catalyst for the oxidation and ammoxidation of olefins. US patent 6,916,763 (2005)

  13. Wolf, A., Mleczko, L., Schlüter, O. F.-K. & Schubert, S. Integrated method for producing chlorine. US patent application 13/122,490 (2009)

  14. Haber, F. & Le Rossignol, R. Process of making ammonia. US patent 999,025 (1911)

  15. Korobkov, I. & Gambarotta, S. Trivalent uranium: a versatile species for molecular activation. Prog. Inorg. Chem. 54, 321–348 (2005)

    Article  CAS  Google Scholar 

  16. Natrajan, L., Mazzanti, M., Bezombes, J.-P. & Pécaut, J. Practical synthetic routes to solvates of U(OTf)3: X-ray crystal structure of [U(OTf)3(MeCN)3]n, a unique U(III) coordination polymer. Inorg. Chem. 44, 6115–6121 (2005)

    Article  CAS  Google Scholar 

  17. Ariyaratne, K. A., Cramer, R. E., Jameson, G. B. & Gilje, J. W. Uranium-sulfilimine chemistry. Hydrolysis of Cp*2UCl2 with HNSPh2 · H2O and the crystal structure of Cp*2UCl(OH)(HNSPh2), a metallocene terminal hydroxy complex of tetravalent uranium. J. Organomet. Chem. 689, 2029–2032 (2004)

    Article  CAS  Google Scholar 

  18. La Pierre, H. S., Kameo, H., Halter, D. P., Heinemann, F. W. & Meyer, K. Coordination and redox isomerization in the reduction of a uranium(III) monoarene complex. Angew. Chem. Int. Ed. 53, 7154–7157 (2014)

    Article  CAS  Google Scholar 

  19. La Pierre, H. S., Scheurer, A., Heinemann, F. W., Hieringer, W. & Meyer, K. Synthesis and characterization of a uranium(II) monoarene complex supported by δ backbonding. Angew. Chem. Int. Ed. 53, 7158–7162 (2014)

    Article  CAS  Google Scholar 

  20. Thoi, V. S., Sun, Y., Long, J. R. & Chang, C. J. Complexes of earth-abundant metals for catalytic electrochemical hydrogen generation under aqueous conditions. Chem. Soc. Rev. 42, 2388–2400 (2013)

    Article  CAS  Google Scholar 

  21. Helm, M. L., Stewart, M. P., Bullock, R. M., DuBois, M. R. & DuBois, D. L. A synthetic nickel electrocatalyst with a turnover frequency above 100,000 s−1 for H2 production. Science 333, 863–866 (2011)

    Article  CAS  ADS  Google Scholar 

  22. Letko, C. S., Panetier, J. A., Head-Gordon, M. & Tilley, T. D. Mechanism of the electrocatalytic reduction of protons with diaryldithiolene cobalt complexes. J. Am. Chem. Soc. 136, 9364–9376 (2014)

    Article  CAS  Google Scholar 

  23. Karunadasa, H. I., Chang, C. J. & Long, J. R. A molecular molybdenum-oxo catalyst for generating hydrogen from water. Nature 464, 1329–1333 (2010)

    Article  CAS  ADS  Google Scholar 

  24. Cobo, S. et al. A Janus cobalt-based catalytic material for electro-splitting of water. Nature Mater. 11, 802–807 (2012)

    Article  CAS  ADS  Google Scholar 

  25. Cavell, A. C., Hartley, C. L., Liu, D., Tribble, C. S. & McNamara, W. R. Sulfinato iron(III) complex for electrocatalytic proton reduction. Inorg. Chem. 54, 3325–3330 (2015)

    Article  CAS  Google Scholar 

  26. Stubbert, B. D., Peters, J. C. & Gray, H. B. Rapid water reduction to H2 catalyzed by a cobalt bis(iminopyridine) complex. J. Am. Chem. Soc. 133, 18070–18073 (2011)

    Article  CAS  Google Scholar 

  27. Das, A., Han, Z., Brennessel, W. W., Holland, P. L. & Eisenberg, R. Nickel complexes for robust light-driven and electrocatalytic hydrogen production from water. ACS Catal. 5, 1397–1406 (2015)

    Article  CAS  Google Scholar 

  28. Halter, D. P., La Pierre, H. S., Heinemann, F. W. & Meyer, K. Uranium(IV) halide (F, Cl, Br, and I) monoarene complexes . Inorg. Chem. 53, 8418–8424 (2014)

    Article  Google Scholar 

  29. Franke, S. M. et al. Uranium(III) complexes with bulky aryloxide ligands featuring metal-arene interactions and their reactivity towards nitrous oxide. Inorg. Chem. 52, 10552–10558 (2013)

    Article  CAS  Google Scholar 

  30. Arney, D. S. J. & Burns, C. J. Synthesis and structure of high-valent organouranium complexes containing terminal monooxo functional groups. J. Am. Chem. Soc. 115, 9840–9841 (1993)

    Article  CAS  Google Scholar 

  31. Sundstrom, E. J. et al. Computational and experimental study of the mechanism of hydrogen generation from water by a molecular molybdenum-oxo electrocatalyst. J. Am. Chem. Soc. 134, 5233–5242 (2012)

    Article  CAS  Google Scholar 

  32. Fulmer, G. R. et al. NMR chemical shifts of trace impurities: common laboratory solvents, organics, and gases in deuterated solvents relevant to the organometallic chemist. Organometallics 29, 2176–2179 (2010)

    Article  CAS  Google Scholar 

  33. Neese, F. Electronic Structure and Spectroscopy of Novel Copper Chromophores in Biology. Diploma thesis, Universität Konstanz (1993)

  34. Feltham, A. M. & Spiro, M. Platinized platinum electrodes. Chem. Rev. 71, 177–193 (1971)

    Article  CAS  Google Scholar 

  35. Roberts, J. A. S. & Bullock, R. M. Direct determination of equilibrium potentials for hydrogen oxidation/production by open circuit potential measurements in acetonitrile. Inorg. Chem. 52, 3823–3835 (2013)

    Article  CAS  Google Scholar 

  36. Bain, G. A. & Berry, J. F. Diamagnetic corrections and Pascal’s constants. J. Chem. Educ. 85, 532–536 (2008)

    Article  CAS  Google Scholar 

  37. Sheldrick, G. M. A short history of SHELX. Acta Crystallogr. A 64, 112–122 (2008)

    Article  CAS  ADS  Google Scholar 

Download references

Acknowledgements

We thank Y. Wu for support with the electrochemical impedance experiments. We also thank J. F. Berry and M. P. Bullock for discussions. For reference experiments, J. R. Long, C. J. Chang and D. Zee are acknowledged for the synthesis and donation of their Mo-based catalyst [PY5Me2MoO](B(C6H3(CF3)2)4)2 and D. J. Mindiola for the synthesis and crystallization of [((Ad,tBuArO)3tacn)U(OH)]. We acknowledge the Bundesministerium für Bildung und Forschung (BMBF, support codes 02NUK012C and 02NUK020C), the FAU Erlangen-Nürnberg, and COST Action CM1006 for financial support.

Author information

Authors and Affiliations

Authors

Contributions

D.P.H., J.B., and K.M. planned the research and prepared the manuscript. D.P.H. performed the experiments. F.W.H conducted the XRD analyses and refined structures. K.M. supervised the project in all aspects.

Corresponding author

Correspondence to Karsten Meyer.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

This file contains Supplementary Text and Data, Supplementary Figures 1-34, Supplementary Tables 1-5 and Supplementary References – see contents for details. (PDF 4384 kb)

PowerPoint slides

Source data

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Halter, D., Heinemann, F., Bachmann, J. et al. Uranium-mediated electrocatalytic dihydrogen production from water. Nature 530, 317–321 (2016). https://doi.org/10.1038/nature16530

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nature16530

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing