Covariation of deep Southern Ocean oxygenation and atmospheric CO2 through the last ice age

Abstract

No single mechanism can account for the full amplitude of past atmospheric carbon dioxide (CO2) concentration variability over glacial–interglacial cycles1. A build-up of carbon in the deep ocean has been shown to have occurred during the Last Glacial Maximum2,3. However, the mechanisms responsible for the release of the deeply sequestered carbon to the atmosphere at deglaciation, and the relative importance of deep ocean sequestration in regulating millennial-timescale variations in atmospheric CO2 concentration before the Last Glacial Maximum, have remained unclear. Here we present sedimentary redox-sensitive trace-metal records from the Antarctic Zone of the Southern Ocean that provide a reconstruction of transient changes in deep ocean oxygenation and, by inference, respired carbon storage throughout the last glacial cycle. Our data suggest that respired carbon was removed from the abyssal Southern Ocean during the Northern Hemisphere cold phases of the deglaciation, when atmospheric CO2 concentration increased rapidly, reflecting—at least in part—a combination of dwindling iron fertilization by dust and enhanced deep ocean ventilation. Furthermore, our records show that the observed covariation between atmospheric CO2 concentration and abyssal Southern Ocean oxygenation was maintained throughout most of the past 80,000 years. This suggests that on millennial timescales deep ocean circulation and iron fertilization in the Southern Ocean played a consistent role in modifying atmospheric CO2 concentration.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Figure 1: Modern oceanographic context.
Figure 2: Palaeoclimatic reconstructions covering the last glacial termination at site TN057-13PC compared with ice core records.
Figure 3: Palaeoclimatic reconstructions covering the interval MIS2 to MIS5a at site TN057-14PC and Ocean Drilling Program (ODP) site 1090 (42.9° S, 8.9° E, 3,700 m) compared with ice core records.

References

  1. 1

    Brovkin, V., Ganopolski, A., Archer, D. & Munhoven, G. Glacial CO2 cycle as a succession of key physical and biogeochemical processes. Clim. Past 8, 251–264 (2012)

    Google Scholar 

  2. 2

    Sigman, D. M., Hain, M. P. & Haug, G. H. The polar ocean and glacial cycles in atmospheric CO2 concentration. Nature 466, 47–55 (2010)

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  3. 3

    Skinner, L. C., Fallon, S., Waelbroeck, C., Michel, E. & Barker, S. Ventilation of the deep Southern Ocean and deglacial CO2 rise. Science 328, 1147–1151 (2010)

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  4. 4

    Schmitt, J. et al. Carbon isotope constraints on the deglacial CO2 rise from ice cores. Science 336, 711–714 (2012)

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  5. 5

    Martínez-Botí, M. A. et al. Boron isotope evidence for oceanic carbon dioxide leakage during the last deglaciation. Nature 518, 219–222 (2015)

    ADS  PubMed  PubMed Central  Google Scholar 

  6. 6

    Martínez-García, A. et al. Iron fertilization of the Subantarctic Ocean during the last ice age. Science 343, 1347–1350 (2014)

    ADS  PubMed  PubMed Central  Google Scholar 

  7. 7

    Anderson, R. F. et al. Biological response to millennial variability of dust and nutrient supply in the Subantarctic South Atlantic Ocean. Phil. Trans. R. Soc. Lond. A 372, 20130054 (2014)

    ADS  Google Scholar 

  8. 8

    Burke, A. & Robinson, L. F. The Southern Ocean's role in carbon exchange during the last deglaciation. Science 335, 557–561 (2012)

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  9. 9

    Jaccard, S. L. et al. Two modes of change in Southern Ocean productivity over the past million years. Science 339, 1419–1423 (2013)

    ADS  CAS  Google Scholar 

  10. 10

    Galbraith, E. D. & Jaccard, S. L. Deglacial weakening of the oceanic soft tissue pump: global constraints from sedimentary nitrogen and oxygenation proxies. Quat. Sci. Rev. 109, 38–48 (2015)

    Google Scholar 

  11. 11

    Ziegler, M., Diz, P., Hall, I. R. & Zahn, R. Millennial-scale changes in atmospheric CO2 levels linked to the Southern Ocean carbon isotope gradient and dust flux. Nature Geosci. 6, 457–461 (2013)

    ADS  CAS  Google Scholar 

  12. 12

    Galbraith, E. D., Kwon, E. Y., Bianchi, D., Hain, M. P. & Sarmiento, J. L. The impact of atmospheric pCO2 on carbon isotope ratio of the atmosphere and ocean. Glob. Biogeochem. Cycles 29, 307–324 (2015)

    ADS  CAS  Google Scholar 

  13. 13

    de Lavergne, C., Palter, J. B., Galbraith, E. D., Bernardello, R. & Marinov, I. Cessation of deep convection in the open Southern Ocean under anthropogenic climate change. Nature Clim. Change 4, 278–282 (2014)

    Google Scholar 

  14. 14

    Kohfeld, K., Le Quéré, C., Harrison, S. P. & Anderson, R. F. Role of marine biology in glacial-interglacial CO2 cycles. Science 308, 74–78 (2005)

    ADS  CAS  Google Scholar 

  15. 15

    François, R. et al. Contribution of Southern Ocean surface-water stratification to low atmospheric CO2 concentrations during the last glacial period. Nature 389, 929–935 (1997)

    ADS  Google Scholar 

  16. 16

    Frank, M. et al. Similar glacial and interglacial export bioproductivity in the Atlantic sector of the Southern Ocean: multiproxy evidence and implications for glacial atmospheric CO2 . Paleoceanography 15, 642–658 (2000)

    ADS  Google Scholar 

  17. 17

    Hoogakker, B. A. A., Elderfield, H., Schmiedl, G., McCave, I. N. & Rickaby, R. E. M. Glacial–interglacial changes in bottom-water oxygen content on the Portugese margin. Nature Geosci. 8, 40–43 (2014)

    ADS  Google Scholar 

  18. 18

    Skinner, L. C., Waelbroeck, C., Scrivner, A. E. & Fallon, S. J. Radiocarbon evidence for alternating northern and southern sources of ventilation of the deep Atlantic carbon pool during the last deglaciation. Proc. Natl Acad. Sci. USA 111, 5480–5484 (2014)

    ADS  CAS  Google Scholar 

  19. 19

    Böhm, E. et al. Strong and deep Atlantic meridional overturning circulation during the last glacial cycle. Nature 517, 73–76 (2014)

    ADS  Google Scholar 

  20. 20

    Lambeck, K., Rouby, H., Purcell, A., Sun, Y. & Sambridge, M. Sea level and global ice volumes from the Last Glacial Maximum to the Holocene. Proc. Natl Acad. Sci. USA 111, 15296–15303 (2014)

    ADS  CAS  Google Scholar 

  21. 21

    Schmittner, A., Brook, E. J. & Ahn, J. in Ocean Circulation: Mechanisms and Impacts – Past and Future Changes of Meridional Overturning Vol. 173 Geophysical Monograph Series (eds Schmittner, A., Chiang, J. & Hemming, S. R. ) 392 (American Geophysical Union, 2007)

  22. 22

    Chiang, J. C. H., Lee, S.-Y., Putnam, A. E. & Wang, X. South Pacific Split Jet, ITCZ shifts, and atmospheric north-south linkages during abrupt climate changes of the last glacial period. Earth Planet. Sci. Lett. 406, 233–246 (2014)

    ADS  CAS  Google Scholar 

  23. 23

    Boex, J. et al. Rapid thinning of the late Pleistocene Patagonian Ice Sheet followed migration of the Southern Westerlies. Sci. Rep. 3, 2118 (2013)

    CAS  PubMed  PubMed Central  Google Scholar 

  24. 24

    Herman, F. et al. Worldwide acceleration of mountain erosion under a cooling climate. Nature 504, 423–426 (2013)

    ADS  CAS  Google Scholar 

  25. 25

    Sugden, D. E., McCulloch, R. D., Bory, A. J.-M. & Hein, A. S. Influence of Patagonian glaciers on Antarctic dust deposition during the last glacial period. Nature Geosci. 2, 281–285 (2009)

    ADS  CAS  Google Scholar 

  26. 26

    Garcia, H. E. et al. Dissolved Oxygen, Apparent Oxygen Utilization, and Oxygen Saturation Vol. 3 (Government Printing Office, 2010)

  27. 27

    Key, R. M. et al. A global ocean carbon climatology: results from Global Data Analysis Project (GLODAP). Glob. Biogeochem. Cycles 18, GB4031 (2004)

    ADS  Google Scholar 

  28. 28

    Marcott, S. A. et al. Centennial-scale changes in the global carbon cycle during the last deglaciation. Nature 514, 616–619 (2014)

    ADS  CAS  Google Scholar 

  29. 29

    Anderson, R. F. et al. Wind-driven upwelling in the Southern Ocean and the deglacial rise in atmospheric CO2 . Science 323, 1443–1448 (2009)

    ADS  CAS  Google Scholar 

  30. 30

    Taylor, S. R. & McLennan, S. M. The Continental Crust: Its Composition and Evolution. An Examination of the Geochemical Record Preserved in Sedimentary Rocks (Blackwell Scientific, 1985)

  31. 31

    Jouzel, J. et al. Orbital and millennial Antarctic climate variability over the past 800,000 years. Science 317, 793–796 (2007)

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  32. 32

    Veres, D. et al. The Antarctic ice core chronology (AICC2012): an optimized multi-parameter and multi-site dating approach for the last 120 thousand years. Clim. Past 9, 1733–1748 (2013)

    Google Scholar 

  33. 33

    Ahn, J. & Brook, E. J. Siple Dome ice reveals two modes of millennial CO2 change during the last ice age. Nature Commun. 5, 3723 (2014)

    ADS  CAS  Google Scholar 

  34. 34

    Bereiter, B. et al. Mode change of millennial CO2 variability during the last glacial cycle associated with a bipolar marine carbon seesaw. Proc. Natl Acad. Sci. USA 109, 9755–9760 (2012)

    ADS  CAS  Google Scholar 

  35. 35

    François, R., Frank, M., Rutgers van der Loeff, M. M. & Bacon, M. P. 230Th normalization: an essential tool for interpreting sedimentary fluxes during the late Quaternary. Paleoceanography 19, PA1018 (2004)

    ADS  Google Scholar 

  36. 36

    Fleisher, M. Q. & Anderson, R. F. Assessing the collection efficiency of Ross Sea sediment traps using 230Th and 231Pa. Deep Sea Res. Part II 50, 693–712 (2003)

    ADS  CAS  Google Scholar 

  37. 37

    Henderson, G. M. & Anderson, R. F. The U-series toolbox for paleoceanography. Rev. Mineral. Geochem. 52, 493–531 (2003)

    CAS  Google Scholar 

  38. 38

    Dymond, J., Suess, E. & Lyle, M. Barium in deep-sea sediments: a geochemical proxy for paleoproductivity. Paleoceanography 7, 163–181 (1992)

    ADS  Google Scholar 

  39. 39

    Calvert, S. E. & Pedersen, T. F. Sedimentary geochemistry of manganese: implication for the environment of formation of manganiferous black shales. Econ. Geol. 91, 36–47 (1996)

    CAS  Google Scholar 

  40. 40

    Klinkhammer, G. P. & Palmer, M. R. Uranium in the oceans: where it goes and why. Geochim. Cosmochim. Acta 55, 1799–1806 (1991)

    ADS  CAS  Google Scholar 

  41. 41

    Morford, J. L. & Emerson, S. The geochemistry of redox sensitive trace metals in sediments. Geochim. Cosmochim. Acta 63, 1735–1750 (1999)

    ADS  CAS  Google Scholar 

  42. 42

    Galbraith, E. D., Gnanadesikan, A., Dunne, J. P. & Hiscock, M. R. Regional impacts of iron-light colimitation in a global biogeochemical model. Biogeosciences 7, 1043–1064 (2010)

    ADS  CAS  Google Scholar 

  43. 43

    Wagner, M. & Hendy, I. L. Trace metal evidence for a poorly ventilated glacial Southern Ocean. Clim. Past Discuss. 11, 637–670 (2015)

    ADS  Google Scholar 

  44. 44

    Yu, J. et al. Deep South Atlantic carbonate chemistry and increased interocean deep water exchange during the last deglaciation. Quat. Sci. Rev. 90, 80–89 (2014)

    ADS  Google Scholar 

  45. 45

    Lambert, F., Bigler, M., Steffensen, J. P., Hutterli, M. A. & Fischer, H. Centennial mineral dust variability in high-resolution ice core data from Dome C, Antarctica. Clim. Past 8, 609–623 (2012)

    Google Scholar 

  46. 46

    Nielsen, S. H. H., Hodell, D. A., Kamenov, G., Guilderson, T. & Perfit, M. R. Origin and significance of ice-rafted detritus in the Atlantic sector of the Southern Ocean. Geochem. Geophys. Geosyst. 8, Q12005 (2007)

    ADS  Google Scholar 

  47. 47

    Kanfoush, S. L. et al. Millennial-scale instability of the Antarctic ice sheet during the last glaciation. Science 288, 1815–1819 (2000)

    ADS  CAS  Google Scholar 

  48. 48

    Chase, Z., Anderson, R. F. & Fleisher, M. Q. Evidence from authigenic uranium for increased productivity of the glacial Subantarctic Ocean. Paleoceanography 16, 468–478 (2001)

    ADS  Google Scholar 

  49. 49

    Anderson, R. F. et al. Late-Quaternary changes in productivity of the Southern Ocean. J. Mar. Syst. 17, 497–514 (1998)

    Google Scholar 

  50. 50

    Kumar, N. et al. Increased biological productivity and export in the glacial Southern Ocean. Nature 378, 675–680 (1995)

    ADS  CAS  Google Scholar 

  51. 51

    Martínez-García, A. et al. Links between iron supply, marine productivity, sea surface temperature, and CO2 over the last 1.1 Ma. Paleoceanography 24, PA1207 (2009)

    ADS  Google Scholar 

  52. 52

    Dezileau, L., Bareille, G. & Reyss, J.-L. Enrichissement en uranium authigène dans les sediments glaciaires de l’océan Austral. C. R. Geosci. 334, 1039–1046 (2002)

    CAS  Google Scholar 

  53. 53

    Rosenthal, Y., Boyle, E. A., Labeyrie, L. D. & Oppo, D. Glacial enrichments of authigenic Cd and U in Subantarctic sediments: a climatic control on the elements’ oceanic budget? Paleoceanography 10, 395–413 (1995)

    ADS  Google Scholar 

  54. 54

    Bareille, G. et al. Glacial-interglacial changes in the accumulation rates of major biogenic components in the Southern Indian Ocean sediments. J. Mar. Syst. 17, 527–539 (1998)

    Google Scholar 

  55. 55

    Chase, Z., Anderson, R. F., Fleisher, M. Q. & Kubik, P. W. Accumulation of biogenic and lithogenic material in the Pacific sector of the Southern Ocean during the past 40,000 years. Deep Sea Res. Part II 50, 799–832 (2003)

    ADS  CAS  Google Scholar 

  56. 56

    François, R., Bacon, M. P., Altabet, M. A. & Labeyrie, L. D. Glacial/interglacial changes in sediment rain rate in the SW Indian sector of Subantarctic waters as recorded by 230Th, 231Pa, U and δ15N. Paleoceanography 8, 611–629 (1993)

    ADS  Google Scholar 

Download references

Acknowledgements

S.L.J. and A.M.-G. were funded by the Swiss National Science Foundation (grants PP00P2-144811 and PZ00P2_142424, respectively), E.D.G. by NSERC, and R.F.A. by the US NSF. Sediment samples were provided by the core repository at the Lamont-Doherty Earth Observatory. Computational resources were provided to E.D.G. by Compute Canada and the Canadian Foundation for Innovation. We thank C. Buizert, H. Fischer, F. Herman and T. Pedersen for discussions.

Author information

Affiliations

Authors

Contributions

S.L.J. and R.F.A. conceived the study and S.L.J. wrote the first iteration of the manuscript. All co-authors provided input to the final version. S.L.J. oversaw the elemental analysis, while R.F.A. supervised the isotopic measurements. E.D.G. provided the climate model outputs and generated the statistical analysis. A.M.-G. refined the age model for core TN057-14PC.

Corresponding author

Correspondence to Samuel L. Jaccard.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Extended data figures and tables

Extended Data Figure 1 Idealized model experiments illustrating the impact of AABW production on dissolved oxygen relative to the core locations.

Shaded contours show the difference in dissolved oxygen (∆O2) averaged between 25° W and 10° E, for a coupled model simulation with strong Weddell convection compared to a simulation with moderate Weddell convection (Methods). Squares indicate the location of sediment cores TN057-13PC and TN057-14PC.

Extended Data Figure 2 Biogenic particle flux reconstructed by 230Th normalization for four independent proxies covering the last glacial termination at site TN057-13PC.

a, 230Th-normalized total organic carbon flux43. b, 230Th-normalized CaCO3 flux. c, 230Th-normalized biogenic barium (bioBa) flux. d, 230Th-normalized biogenic opal flux29. CaCO3 and bioBa data are from this study. The accumulation of biogenic CaCO3 above glacial background values during HS1 and the YD is consistent with enhanced ventilation of bottom waters during these intervals. Enhanced ventilation of bottom waters would have lowered the regenerated DIC concentration of the bottom water by releasing excess CO2 to the atmosphere, raising the [CO32−] (ref. 44) and calcite saturation state of the bottom water9 and thus reducing CaCO3 dissolution.

Extended Data Figure 3 Qualitative changes in oxygenation between the LGM and the Holocene.

Red/black dots indicate the location of sedimentary records for which authigenic U concentrations/mass accumulation rates were higher/lower during the LGM when compared to the Holocene, respectively. White dots highlight cores where authigenic U concentrations did not change much between these two intervals (see Extended Data Table 1 for details). Shadings show the modern bottom water dissolved oxygen concentrations26.

Extended Data Figure 4 Palaeoclimatic reconstructions covering the last glacial termination at site TN057-13PC compared with ice core records.

a, Atmospheric (ref. 28). b, EPICA Dome C (EDC) dust flux45. c, Sedimentary authigenic U (aU) concentrations. d, Sedimentary Mn/Al. e, 230Th-normalized biogenic opal flux, f(opal)29.

Extended Data Figure 5 Comparison of bulk sediment accumulation rates and authigenic U concentrations in sediment core TN057-14PC for the interval 20–80 kyr ago.

a, Bulk sediment accumulation rates (SedRate). b, Authigenic U concentrations.

Extended Data Figure 6 Comparison of the deglacial sequences at sites TN57-14PC and TN057-13PC.

a, δ18Opachy (where ‘pachy’ refers to the planktonic foraminifera Neogloboquadrina pachyderma) (ref. 46) and 230Th-normalized biogenic opal flux28 in core TN057-14PC. b, δ18Opachy (ref. 47) and 230Th-normalized biogenic opal flux28 in core TN057-13PC. The grey shading highlights the disturbed portion of core TN057-14PC. The black triangle highlights the presence of planktonic foraminifera deposited during the Younger Dryas (that is, 12.18 kyr ago; ref. 46), which have been mixed down into late LGM sediments after the hiatus occurred.

Extended Data Figure 7 Cross-plot of Mn/Al and authigenic U across the last glacial termination in sediment core TN057-13PC.

Extended Data Table 1 Available Southern Ocean low-resolution records permitting reconstruction of the authigenic U Holocene–LGM gradient compiled from the literature
Extended Data Table 2 Statistical correlation between sedimentary proxies for the interval 20–82 kyr ago

PowerPoint slides

Source data

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Jaccard, S., Galbraith, E., Martínez-García, A. et al. Covariation of deep Southern Ocean oxygenation and atmospheric CO2 through the last ice age. Nature 530, 207–210 (2016). https://doi.org/10.1038/nature16514

Download citation

Further reading

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.