Letter | Published:

Biomass resilience of Neotropical secondary forests

Nature volume 530, pages 211214 (11 February 2016) | Download Citation


Land-use change occurs nowhere more rapidly than in the tropics, where the imbalance between deforestation and forest regrowth has large consequences for the global carbon cycle1. However, considerable uncertainty remains about the rate of biomass recovery in secondary forests, and how these rates are influenced by climate, landscape, and prior land use2,3,4. Here we analyse aboveground biomass recovery during secondary succession in 45 forest sites and about 1,500 forest plots covering the major environmental gradients in the Neotropics. The studied secondary forests are highly productive and resilient. Aboveground biomass recovery after 20 years was on average 122 megagrams per hectare (Mg ha−1), corresponding to a net carbon uptake of 3.05 Mg C ha−1 yr−1, 11 times the uptake rate of old-growth forests. Aboveground biomass stocks took a median time of 66 years to recover to 90% of old-growth values. Aboveground biomass recovery after 20 years varied 11.3-fold (from 20 to 225 Mg ha−1) across sites, and this recovery increased with water availability (higher local rainfall and lower climatic water deficit). We present a biomass recovery map of Latin America, which illustrates geographical and climatic variation in carbon sequestration potential during forest regrowth. The map will support policies to minimize forest loss in areas where biomass resilience is naturally low (such as seasonally dry forest regions) and promote forest regeneration and restoration in humid tropical lowland areas with high biomass resilience.

Access optionsAccess options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.


  1. 1.

    et al. High-resolution global maps of 21st-century forest cover change. Science 342, 850–853 (2013)

  2. 2.

    IPCC. 2006 IPCC Guidelines for National Greenhouse Gas Inventories (Institute for Global Environmental Strategies, 2006)

  3. 3.

    , & Perturbations in the carbon budget of the tropics. Glob. Change Biol. 20, 3238–3255 (2014)

  4. 4.

    Second Growth: The Promise of Tropical Forest Regeneration in an Age of Deforestation Ch. 11 (Univ. Chicago Press, 2014)

  5. 5.

    Food and Agriculture Organization of the United Nations. Global Forest Resources Assessment. FAO Forestry Paper 163 (FAO, 2010)

  6. 6.

    et al. Using ecological thresholds to evaluate the costs and benefits of set-asides in a biodiversity hotspot. Science 345, 1041–1045 (2014)

  7. 7.

    , , & Global resilience of tropical forest and savanna to critical transitions. Science 334, 232–235 (2011)

  8. 8.

    et al. A large and persistent carbon sink in the world’s forests. Science 333, 988–993 (2011)

  9. 9.

    et al. Benchmark map of forest carbon stocks in tropical regions across three continents. Proc. Natl Acad. Sci. USA 108, 9899–9904 (2011)

  10. 10.

    , , & Biomass is the main driver of changes in ecosystem process rates during tropical forest succession. Ecology 96, 1242–1252 (2015)

  11. 11.

    & Demographic drivers of tree biomass change during secondary succession in northeastern Costa Rica. Ecol. Appl. 25, 506–516 (2015)

  12. 12.

    et al. Rates of change in tree communities of secondary Neotropical forests following major disturbances. Phil. Trans. R. Soc. B 362, 273–289 (2007)

  13. 13.

    , & Aboveground biomass in mature and secondary seasonally dry tropical forests: a literature review and global synthesis. For. Ecol. Mgmt 276, 88–95 (2012)

  14. 14.

    & Stand age and soils as drivers of plant functional traits and aboveground biomass in secondary tropical dry forest. Can. J. Forest Res. 44, 604–613 (2014)

  15. 15.

    , , & Loss of secondary-forest resilience by land-use intensification in the Amazon. J. Ecol. 103, 67–77 (2015)

  16. 16.

    et al. Legacy of fire slows carbon accumulation in Amazonian forest regrowth. Front. Ecol. Environ. 3, 365–369 (2005)

  17. 17.

    , , & in Post-Agricultural Succession in the Neotropics (ed. ) 22–72 (Springer, 2008)

  18. 18.

    , & Carbon pools recover more quickly than plant biodiversity in tropical secondary forests. Proc. R. Soc. B 280, (2013)

  19. 19.

    et al. Long-term decline of the Amazon carbon sink. Nature 519, 344–348 (2015)

  20. 20.

    et al. Rapid tree carbon stock recovery in managed Amazonian forests. Curr. Biol. 25, R787–R788 (2015)

  21. 21.

    , , & The potential of secondary forests. Science 348, 642–643 (2015)

  22. 22.

    et al. Climate is a stronger driver of tree and forest growth rates than soil and disturbance. J. Ecol. 99, 254–264 (2011)

  23. 23.

    IPCC. Climate Change 2014: Synthesis Report. Contribution of Working Groups I, II and III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change (IPCC, 2014)

  24. 24.

    et al. Basin-wide variations in Amazon forest structure and function are mediated by both soils and climate. Biogeosciences 9, 2203–2246 (2012)

  25. 25.

    et al. Recuperation of nitrogen cycling in Amazonian forests following agricultural abandonment. Nature 447, 995–998 (2007)

  26. 26.

    , , & Simulating the impacts of reduced rainfall on carbon stocks and net ecosystem exchange in a tropical forest. Environ. Model. Softw. 52, 200–206 (2014)

  27. 27.

    , , , , , & , Scale-dependence of aboveground carbon accumulation in secondary forests of Panama: a test of the intermediate peak hypothesis. For. Ecol. Mgmt 276, 62–70 (2012)

  28. 28.

    Beyond deforestation: restoring forests and ecosystem services on degraded lands. Science 320, 1458–1460 (2008)

  29. 29.

    et al. Cost-effectiveness of dryland forest restoration evaluated by spatial analysis of ecosystem services. Proc. Natl Acad. Sci. USA 107, 21925–21930 (2010)

  30. 30.

    , , , & Very high resolution interpolated climate surfaces for global land areas. Int. J. Climatol. 25, 1965–1978 (2005)

  31. 31.

    , , & Harmonized World Soil Database Version 1.2 (FAO and IIASA, 2012)

  32. 32.

    , & Source Book for Land Use, Land-Use Change and Forestry Projects (World Bank, 2005)

  33. 33.

    et al. Tree allometry and improved estimation of carbon stocks and balance in tropical forests. Oecologia 145, 87–99 (2005)

  34. 34.

    et al. Improved allometric models to estimate the aboveground biomass of tropical trees. Glob. Change Biol. 20, 3177–3190 (2014)

  35. 35.

    & Landscape-scale variation in forest structure and biomass in a tropical rain forest. For. Ecol. Mgmt 137, 185–198 (2000)

  36. 36.

    et al. Markedly divergent estimates of Amazon forest carbon density from ground plots and satellites. Glob. Ecol. Biogeogr. 23, 935–946 (2014)

  37. 37.

    et al. Towards a worldwide wood economics spectrum. Ecol. Lett. 12, 351–366 (2009)

  38. 38.

    et al. Data from: Towards a worldwide wood economics spectrum. (Dryad Digital Repository, 2009)

  39. 39.

    et al. Regional and phylogenetic variation of wood density across 2456 Neotropical tree species. Ecol. Appl. 16, 2356–2367 (2006)

  40. 40.

    et al. Diversity enhances carbon storage in tropical forests. Glob. Ecol. Biogeogr. 24, 1314–1328 (2015)

  41. 41.

    et al. How does biomass distribution change with size and differ among species? An analysis for 1200 plant species from five continents. New Phytol. 208, 736–749 (2015)

  42. 42.

    R Core Team. R: a language and environment for statistical computing (R Foundation for Statistical Computing, 2014)

  43. 43.

    et al. Terrestrial ecoregions of the world: a new map of life on Earth. Bioscience 51, 933–938 (2001)

  44. 44.

    et al. Integrating stand and soil properties to understand foliar nutrient dynamics during forest succession following slash-and-burn agriculture in the Bolivian Amazon. PLoS ONE 9, e86042 (2014)

  45. 45.

    Changes in forest structure and species composition during secondary forest succession in the Bolivian Amazon. Biotropica 35, 450–461 (2003)

  46. 46.

    & Secondary succession and indigenous management in semideciduous forest fallows of the Amazon basin. Biotropica 38, 161–170 (2006)

  47. 47.

    Secondary forest succession in a tropical dry forest: patterns of development across a 50-year chronosequence in lowland Bolivia. J. Trop. Ecol. 18, 53–66 (2002)

  48. 48.

    Secondary forest structure and biomass following short and extended land use in central and southern Amazonia. J. Trop. Ecol. 16, 689–708 (2000)

  49. 49.

    Spatial Dynamics of Forest Recovery after Swidden Cultivation in the Atlantic Forest of Southern Bahia, Brazil. PhD thesis, Yale Univ. (2011)

  50. 50.

    et al. Classifying successional forests using Landsat spectral properties and ecological characteristics in eastern Amazonia. Remote Sens. Environ. 87, 470–481 (2003)

  51. 51.

    , , & Convergence and divergence in alternative successional pathways in Central Amazonia. Plant Ecol. Divers. 7, 341–348 (2014)

  52. 52.

    et al. Changes in tree and liana communities along a successional gradient in a tropical dry forest in south-eastern Brazil. Plant Ecol. 201, 291–304 (2009)

  53. 53.

    , & Estrutura espacial e biomassa da parte aérea em diferentes estádios successionais de caatinga, em Santa Terezinha, Paraíba. Rev. Bras. Geogr. Fís. 6, 566–574 (2013)

  54. 54.

    , & Secondary forests on anthropogenic soils conserve agrobiodiversity. Biodivers. Conserv. 19, 1933–1961 (2010)

  55. 55.

    & Tree architecture and secondary tropical rain forest development - a case study in Araracuara, Colombian Amazonia. Flora 193, 75–97 (1998)

  56. 56.

    , & Vegetation structure, composition, and species richness across a 56-year chronosequence of dry tropical forest on Providencia Island, Colombia. Biotropica 37, 520–530 (2005)

  57. 57.

    , , & Long-term chronosequence of forest succession in the upper Rio Negro of Colombia and Venezuela. J. Ecol. 76, 938–958 (1988)

  58. 58.

    , , & Diversity and structure of regenerating tropical dry forests in Costa Rica: geographic patterns and environmental drivers. For. Ecol. Mgmt 258, 959–970 (2009)

  59. 59.

    , & Effects of climate and stand age on annual tree dynamics in tropical second-growth rain forests. Ecology 86, 1808–1815 (2005)

  60. 60.

    & Rapid recovery of biomass, species richness, and species composition in a forest chronosequence in northeastern Costa Rica. Biotropica 41, 608–617 (2009)

  61. 61.

    , & Community dynamics during early secondary succession in Mexican tropical rain forests. J. Trop. Ecol. 22, 663–674 (2006)

  62. 62.

    et al. Testing chronosequences through dynamic approaches: time and site effects on tropical dry forest succession. Biotropica 47, 38–48 (2015)

  63. 63.

    et al. Carbon stocks and accumulation rates in tropical secondary forests at the scale of community, landscape and forest type. Agric. Ecosyst. Environ. 171, 72–84 (2013)

  64. 64.

    , , & Successional change and resilience of a very dry tropical deciduous forest following shifting agriculture. Biotropica 40, 422–431 (2008)

  65. 65.

    et al. Patterns and correlates of tropical dry forest structure and composition in a highly replicated chronosequence in Yucatan, Mexico. Biotropica 44, 151–162 (2012)

  66. 66.

    et al. Succession of ephemeral secondary forests and their limited role for the conservation of floristic diversity in a human-modified tropical landscape. PLoS ONE 8, e82433 (2013)

  67. 67.

    & Variation in stand structure, light and seedling abundance across a tropical moist forest chronosequence, Panama. J. Veg. Sci. 11, 201–212 (2000)

  68. 68.

    , & Long-term patterns in tropical reforestation: plant community composition and aboveground biomass accumulation. Ecol. Appl. 17, 828–839 (2007)

  69. 69.

    , , , & Forest regeneration in a chronosequence of tropical abandoned pastures: implications for restoration ecology. Restor. Ecol. 8, 328–338 (2000)

Download references


This paper is a product of the 2ndFOR collaborative research network on secondary forests. We thank the owners of the secondary forest sites for access to their forests, all the people who have established and measured the plots, and the institutions and funding agencies that supported them. We thank J. Zimmerman for the use of plot data, and the following agencies for financial support: Australian Department of Foreign Affairs and Trade-DFAT, CGIAR-FTA, CIFOR, Colciencias grant 1243-13-16640, Consejo Nacional de Ciencia y Tecnología (SEP-CONACYT 2009-129740 for ReSerBos, CONACYT 33851-B), Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq: 563304/2010-3, 562955/2010-0, 574008/2008-0 and PQ 307422/2012-7), FOMIX-Yucatan (YUC-2008-C06-108863), ForestGEO, Fundação de Amparo à Pesquisa de Minas Gerais (FAPEMIG CRA APQ-00001-11), Fundación Ecológica de Cuixmala, Heising-Simons Foundation, HSBC, ICETEX, Instituto Internacional de Educação do Brasil-IEB, Instituto Nacional de Serviços Ambientais da Amazônia -Servamb-INPA, Inter-American Institute for Global Change (Tropi-Dr Network CRN3-025) via a grant from the US National Science Foundation (grant GEO-1128040), Motta Family Foundation, NASA Terrestrial Ecology Program, National Science Foundation (NSF-CNH-RCN grant 1313788 for Tropical Reforestation Network: Building a Socioecological Understanding of Tropical Reforestation (PARTNERS), NSF DEB-0129104, NSF BCS-1349952, NSF Career Grant DEB-1053237, NSF DEB 1050957, 0639393, 1147429, 0639114, and 1147434), NUFFIC, USAID (BOLFOR), Science without Borders Program (CAPES/CNPq) grant number 88881.064976/2014-01, The São Paulo Research Foundation (FAPESP) grant 2011/06782-5 and 2014/14503-7, Silicon Valley Foundation, Stichting Het Kronendak, Tropenbos Foundation, University of Connecticut Research Foundation, Wageningen University (INREF Terra Preta programme and FOREFRONT programme). This is publication number 683 in the Technical Series of the Biological Dynamics of Forest Fragments Project BDFFP-INPA-SI. This study was partly funded by the European Union’s Seventh Framework Programme (FP7/2007-2013) under grant agreement number 283093; Role Of Biodiversity In climate change mitigatioN (ROBIN).

Author information


  1. Forest Ecology and Forest Management Group, Wageningen University, PO Box 47, 6700 AA Wageningen, The Netherlands

    • Lourens Poorter
    • , Frans Bongers
    • , Catarina C. Jakovac
    • , Madelon Lohbeck
    • , Marielos Peña-Claros
    •  & Danaë M. A. Rozendaal
  2. PO Box 23360, Department of Biology, University of Puerto Rico, San Juan, PR 00931-3360, Puerto Rico

    • T. Mitchell Aide
  3. Spatial Ecology and Conservation Lab, Department of Geography, University of Alabama, Tuscaloosa, Alabama 35487, USA

    • Angélica M. Almeyda Zambrano
    •  & Eben N. Broadbent
  4. Instituto de Investigaciones en Ecosistemas y Sustentabilidad, Universidad Nacional Autónoma de México, CP58190, Morelia, Michoacán, México

    • Patricia Balvanera
    • , Miguel Martínez-Ramos
    • , Francisco Mora
    •  & Jorge Rodríguez-Velázquez
  5. Department of Ecology and Evolutionary Biology, Brown University, Providence, Rhode Island 02912, USA

    • Justin M. Becknell
  6. Department of Ecology and Evolutionary Biology, University of Connecticut, Storrs, Connecticut 06269, USA

    • Vanessa Boukili
    • , Robin L. Chazdon
    •  & Danaë M. A. Rozendaal
  7. Department of Forest Sciences, Luiz de Queiroz College of Agriculture, University of São Paulo, Avenida Pádua Dias 11, 13418-900, Piracicaba, São Paulo, Brazil

    • Pedro H. S. Brancalion
    •  & Ricardo G. César
  8. SI ForestGEO, Smithsonian Tropical Research Institute, Roosevelt Avenue, Tupper Building – 401, Balboa, Ancón, Panamá, Panamá

    • Dylan Craven
    • , Jefferson S. Hall
    •  & Michiel van Breugel
  9. German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Deutscher Platz 5e, 04103 Leipzig, Germany.

    • Dylan Craven
  10. Institute for Biology, Leipzig University, Johannisallee 21, 04103 Leipzig, Germany

    • Dylan Craven
  11. Departamento de Botanica, Universidade Federal de Pernambuco, Pernambuco, CEP 50670-901, Brazil

    • Jarcilene S. de Almeida-Cortez
    •  & George A. L. Cabral
  12. Department of Sustainability Science, El Colegio de la Frontera Sur, Unidad Campeche, Av. Rancho Polígono 2A, Parque Industrial Lerma, Campeche, Campeche, CP 24500, México

    • Ben H. J. de Jong
    • , Susana Ochoa-Gaona
    •  & Edith Orihuela-Belmonte
  13. Department of Ecology and Evolutionary Biology, Tulane University, New Orleans, Louisiana 70130, USA

    • Julie S. Denslow
  14. Smithsonian Tropical Research Institute, Roosevelt Avenue, Tupper Building – 401, Balboa, Ancón, Panamá, Panamá

    • Daisy H. Dent
  15. Biological and Environmental Sciences, University of Stirling, Stirling FK9 4LA, UK

    • Daisy H. Dent
  16. Department of Biological Sciences, Clemson University, 132 Long Hall, Clemson, South Carolina 29634, USA

    • Saara J. DeWalt
  17. Centro de Investigación Científica de Yucatán, AC, Unidad de Recursos Naturales, Calle 43 No. 130, Colonia Chuburná de Hidalgo, CP 97200, Mérida, Yucatán, México

    • Juan M. Dupuy
    •  & José Luis Hernandez-Stefanoni
  18. Earth and Atmospheric Sciences Department, University of Alberta, Edmonton, Alberta T6G 2E3, Canada

    • Sandra M. Durán
    •  & Arturo Sanchez-Azofeifa
  19. Departamento de Biologia Geral, Universidade Estadual de Montes Claros, Montes Claros, Minas Gerais, CEP 39401-089, Brazil

    • Mario M. Espírito-Santo
    • , Yule R. F. Nunes
    •  & Maria D. M. Veloso
  20. Fondo Patrimonio Natural para la Biodiversidad y Areas Protegidas, Calle 72 No. 12-65 piso 6, Bogotá, Colombia

    • María C. Fandino
  21. Biological Dynamics of Forest Fragments Project, Environmental Dynamics Research Coordination, Instituto Nacional de Pesquisas da Amazonia, Manaus, Amazonas, CEP 69067-375, Brazil

    • Catarina C. Jakovac
    • , Paulo Massoca
    • , Rita Mesquita
    • , Alberto Vicentini
    • , Tony Vizcarra Bentos
    •  & G. Bruce Williamson
  22. Centre for Crop Systems Analysis, Wageningen University, PO Box 430, 6700 AK Wageningen, The Netherlands

    • André B. Junqueira
  23. Knowledge, Technology and Innovation Group, Wageningen University, PO Box 8130, 6700 EW Wageningen, The Netherlands

    • André B. Junqueira
  24. Coordenação de Tecnologia e Inovação, Instituto Nacional de Pesquisas da Amazônia, Avenida André Araújo, 2936 – Aleixo, 69060-001 Manaus, Brazil

    • André B. Junqueira
  25. Department of Physical and Environmental Sciences, Colorado Mesa University, 1100 North Avenue, Grand Junction, Colorado 81501, USA

    • Deborah Kennard
  26. Department of Environmental Studies, Purchase College (State University of New York), Purchase, New York 10577, USA

    • Susan G. Letcher
  27. Instituto Boliviano de Investigación Forestal (IBIF), FCA-UAGRM, Casilla 6204, Santa Cruz de la Sierra, Bolivia

    • Juan-Carlos Licona
    •  & Marisol Toledo
  28. World Agroforestry Centre (ICRAF), PO Box 30677 - 00100, Nairobi, Kenya

    • Madelon Lohbeck
  29. Department of Geography, University of Wisconsin-Madison, 550 North Park Street, Madison, Wisconsin 53706, USA

    • Erika Marín-Spiotta
  30. Departamento de Ecología y Recursos Naturales, Facultad de Ciencias, Universidad Nacional Autónoma de México, México 04510 DF, México

    • Jorge A. Meave
    • , Francisco Mora
    • , Rodrigo Muñoz
    • , Eduardo A. Pérez-García
    •  & I. Eunice Romero-Pérez
  31. Department of Ecology, Evolution and Environmental Biology, Columbia University, New York, New York 10027, USA

    • Robert Muscarella
    • , Naomi B. Schwartz
    •  & Maria Uriarte
  32. Section of Ecoinformatics and Biodiversity, Department of Bioscience, Aarhus University, Aarhus 8000, Denmark

    • Robert Muscarella
  33. Departamento de Ecologia, Instituto de Biociências, Universidade de São Paulo, Rua do Matão, travessa 14, No. 321, São Paulo, CEP 05508-090, Brazil

    • Alexandre A. de Oliveira
  34. Universidade Federal do Sul da Bahia, Centro de Formação em Ciências Agroflorestais, Itabuna-BA, 45613-204, Brazil

    • Daniel Piotto
  35. Department of Ecology, Evolution, & Behavior, University of Minnesota, Saint Paul, Minnesota 55108, USA

    • Jennifer S. Powers
  36. Department of Plant Biology, University of Minnesota, Saint Paul, Minnesota 55108, USA

    • Jennifer S. Powers
  37. School of Social Sciences, Geography Area, Universidad Pedagogica y Tecnologica de Colombia (UPTC), Tunja, Colombia

    • Jorge Ruíz
  38. Department of Geography, 4841 Ellison Hall, University of California, Santa Barbara, California 93106, USA

    • Jorge Ruíz
  39. Cr 5 No 14-05, PO Box 412, Cota, Cundinamarca, Colombia

    • Juan G. Saldarriaga
  40. 4007 18th St Northwest, Washington DC 20011, USA

    • Marc K. Steininger
  41. Department of Biology, University of Maryland, College Park, Maryland 20742, USA

    • Nathan G. Swenson
  42. Yale-NUS College, 12 College Avenue West, Singapore 138610

    • Michiel van Breugel
  43. Department of Biological Sciences, National University of Singapore, 14 Science Drive 4, Singapore 11754

    • Michiel van Breugel
  44. Departamento de Agricultura, Sociedad y Ambiente, El Colegio de la Frontera Sur - Unidad Villahermosa, 86280 Centro, Tabasco, México

    • Hans van der Wal
  45. Institute for Biodiversity and Ecosystem Dynamics (IBED), University of Amsterdam, PO Box 94248, 1090 GE Amsterdam, The Netherlands

    • Hans F. M. Vester
  46. Bonhoeffer College, Bruggertstraat 60, 7545 AX Enschede, The Netherlands

    • Hans F. M. Vester
  47. Museu Paraense Emilio Goeldi, CP 399, CEP 66040-170, Belém, Brazil

    • Ima C. G. Vieira
  48. Department of Biological Sciences, Louisiana State University, Baton Rouge, Louisiana 70803-1705, USA

    • G. Bruce Williamson
  49. Department of Biology, University of Regina, 3737 Wascana Parkway, Regina, Saskatchewan S4S 0A2, Canada

    • Danaë M. A. Rozendaal


  1. Search for Lourens Poorter in:

  2. Search for Frans Bongers in:

  3. Search for T. Mitchell Aide in:

  4. Search for Angélica M. Almeyda Zambrano in:

  5. Search for Patricia Balvanera in:

  6. Search for Justin M. Becknell in:

  7. Search for Vanessa Boukili in:

  8. Search for Pedro H. S. Brancalion in:

  9. Search for Eben N. Broadbent in:

  10. Search for Robin L. Chazdon in:

  11. Search for Dylan Craven in:

  12. Search for Jarcilene S. de Almeida-Cortez in:

  13. Search for George A. L. Cabral in:

  14. Search for Ben H. J. de Jong in:

  15. Search for Julie S. Denslow in:

  16. Search for Daisy H. Dent in:

  17. Search for Saara J. DeWalt in:

  18. Search for Juan M. Dupuy in:

  19. Search for Sandra M. Durán in:

  20. Search for Mario M. Espírito-Santo in:

  21. Search for María C. Fandino in:

  22. Search for Ricardo G. César in:

  23. Search for Jefferson S. Hall in:

  24. Search for José Luis Hernandez-Stefanoni in:

  25. Search for Catarina C. Jakovac in:

  26. Search for André B. Junqueira in:

  27. Search for Deborah Kennard in:

  28. Search for Susan G. Letcher in:

  29. Search for Juan-Carlos Licona in:

  30. Search for Madelon Lohbeck in:

  31. Search for Erika Marín-Spiotta in:

  32. Search for Miguel Martínez-Ramos in:

  33. Search for Paulo Massoca in:

  34. Search for Jorge A. Meave in:

  35. Search for Rita Mesquita in:

  36. Search for Francisco Mora in:

  37. Search for Rodrigo Muñoz in:

  38. Search for Robert Muscarella in:

  39. Search for Yule R. F. Nunes in:

  40. Search for Susana Ochoa-Gaona in:

  41. Search for Alexandre A. de Oliveira in:

  42. Search for Edith Orihuela-Belmonte in:

  43. Search for Marielos Peña-Claros in:

  44. Search for Eduardo A. Pérez-García in:

  45. Search for Daniel Piotto in:

  46. Search for Jennifer S. Powers in:

  47. Search for Jorge Rodríguez-Velázquez in:

  48. Search for I. Eunice Romero-Pérez in:

  49. Search for Jorge Ruíz in:

  50. Search for Juan G. Saldarriaga in:

  51. Search for Arturo Sanchez-Azofeifa in:

  52. Search for Naomi B. Schwartz in:

  53. Search for Marc K. Steininger in:

  54. Search for Nathan G. Swenson in:

  55. Search for Marisol Toledo in:

  56. Search for Maria Uriarte in:

  57. Search for Michiel van Breugel in:

  58. Search for Hans van der Wal in:

  59. Search for Maria D. M. Veloso in:

  60. Search for Hans F. M. Vester in:

  61. Search for Alberto Vicentini in:

  62. Search for Ima C. G. Vieira in:

  63. Search for Tony Vizcarra Bentos in:

  64. Search for G. Bruce Williamson in:

  65. Search for Danaë M. A. Rozendaal in:


L.P., F.B. and D.R. conceived the idea and coordinated the data compilations, D.R. analysed the data, L.P., F.B., E.N.B. and R.C. contributed to analytical tools used in the analysis, E.N.B. and A.M.A.Z. made the map, L.P. wrote the paper, and all co-authors collected field data, discussed the results, gave suggestions for further analyses and commented on the manuscript.

Competing interests

The authors declare no competing financial interests.

Corresponding author

Correspondence to Lourens Poorter.

Plot-level AGB data of 41 sites are available from the Dryad Digital Repository: http://dx.doi.org/10.5061/dryad.82vr4, and for four sites they can be requested from L.P.

Extended data

Supplementary information

PDF files

  1. 1.

    Supplementary Information

    This file contains Supplementary Text, Supplementary References and 2 Supplementary Tables.

About this article

Publication history






Further reading


By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.