Abstract
A thorough understanding of the pharmacokinetic and pharmacodynamic properties of a drug in animal models is a critical component of drug discovery and development1,2,3,4,5,6. Such studies are performed in vivo and in vitro at various stages of the development process—ranging from preclinical absorption, distribution, metabolism and excretion (ADME) studies to late-stage human clinical trials—to elucidate a drug molecule’s metabolic profile and to assess its toxicity2. Radiolabelled compounds, typically those that contain 14C or 3H isotopes, are one of the most powerful and widely deployed diagnostics for these studies4,5. The introduction of radiolabels using synthetic chemistry enables the direct tracing of the drug molecule without substantially altering its structure or function. The ubiquity of C–H bonds in drugs and the relative ease and low cost associated with tritium (3H) make it an ideal radioisotope with which to conduct ADME studies early in the drug development process2,4,6. Here we describe an iron-catalysed method for the direct 3H labelling of pharmaceuticals by hydrogen isotope exchange, using tritium gas as the source of the radioisotope. The site selectivity of the iron catalyst is orthogonal to currently used iridium catalysts and allows isotopic labelling of complementary positions in drug molecules, providing a new diagnostic tool in drug development.
This is a preview of subscription content, access via your institution
Relevant articles
Open Access articles citing this article.
-
One-pot H/D exchange and low-coordinated iron electrocatalyzed deuteration of nitriles in D2O to α,β-deuterio aryl ethylamines
Nature Communications Open Access 10 October 2022
-
Scalable and selective deuteration of (hetero)arenes
Nature Chemistry Open Access 13 January 2022
-
Tritiation of aryl thianthrenium salts with a molecular palladium catalyst
Nature Open Access 15 December 2021
Access options
Subscribe to this journal
Receive 51 print issues and online access
$199.00 per year
only $3.90 per issue
Rent or buy this article
Prices vary by article type
from$1.95
to$39.95
Prices may be subject to local taxes which are calculated during checkout




References
Lappin, G. & Temple, S. Radiotracers in Drug Development (CRC Press, 2006)
Isin, E. M., Elmore, C. S., Nilsson, G. N., Thompson, R. A. & Weidolf, L. Use of radiolabeled compounds in drug metabolism and pharmacokinetic studies. Chem. Res. Toxicol. 25, 532–542 (2012)
Marathe, P. H., Shyu, W. C. & Humphreys, W. G. The use of radiolabeled compounds for ADME studies in discovery and exploratory development. Curr. Pharm. Des. 10, 2991–3008 (2004)
Lockley, W. J. S., McEwen, A. & Cooke, R. Tritium: a coming of age for drug discovery and development ADME studies. J. Labelled Comp. Radiopharm. 55, 235–257 (2012)
Elmore, C. S. The use of isotopically labeled compounds in drug discovery. Annu. Rep. Med. Chem. 44, 515–534 (2009)
Voges, R., Heys, J. R. & Moenius, T. Preparation of Compounds Labeled with Tritium and Carbon-14 (John Wiley, 2009)
Meanwell, N. A. Synopsis of some recent tactical application of bioisosteres in drug design. J. Med. Chem. 54, 2529–2591 (2011)
Katsnelson, A. Heavy drugs draw heavy interest from pharma backers. Nature Med. 19, 656 (2013)
Jarman, M. et al. The deuterium isotope effect for the α-hydroxylation of tamoxifen by rat liver microsomes accounts for the reduced genotoxicity of [D5-ethyl]tamoxifen. Carcinogenesis 16, 683–688 (1995)
Atzrodt, J., Derdau, V., Fey, T. & Zimmermann, J. The renaissance of H/D exchange. Angew. Chem. Int. Edn 46, 7744–7765 (2007)
Klei, S. R., Golden, J. T., Tilley, T. D. & Bergman, R. G. Iridium-catalyzed H/D exchange into organic compounds in water. J. Am. Chem. Soc. 124, 2092–2093 (2002)
Ma, S., Villa, G., Thuy-Boun, P. S., Homs, A. & Yu, J.-Q. Palladium-catalyzed ortho-selective C-H deuteration of arenes: evidence for superior reactivity of weakly coordinated palladacycles. Angew. Chem. Int. Edn 53, 734–737 (2014)
Zhou, J. & Hartwig, J. F. Iridium-catalyzed H/D exchange at vinyl groups without olefin isomerization. Angew. Chem. Int. Edn 47, 5783–5787 (2008)
Crabtree, R., Felkin, H. & Morris, G. Cationic iridium diolefin complexes as alkene hydrogenation catalysts and isolation of some related hydrido complexes. J. Organomet. Chem. 141, 205–215 (1977)
Nilsson, G. N. & Kerr, W. J. The development and use of novel iridium complexes as catalysts for ortho-directed hydrogen isotope exchange reactions. J. Labelled Comp. Radiopharm. 53, 662–667 (2010)
Hesk, D., Das, P. R. & Evans, B. Deuteration of acetanilides and other substituted aromatics using [Ir(COD)(Cy3P)(Py)]PF6 as catalyst. J. Labelled Comp. Radiopharm. 36, 497–502 (1995)
Lockley, W. J. S. & Heys, J. R. Metal-catalysed hydrogen isotope exchange labelling: a brief overview. J. Labelled Comp. Radiopharm. 53, 635–644 (2010)
Brown, J. A. et al. The synthesis of highly active iridium(I) complexes and their application in catalytic hydrogen isotope exchange. Adv. Synth. Catal. 356, 3551–3562 (2014)
Salter, R. The development and use of iridium(I) phosphine systems for ortho-directed hydrogen-isotope exchange. J. Labelled Comp. Radiopharm. 53, 645–657 (2010)
Danopoulos, A. A., Wright, J. A. & Motherwell, W. B. Molecular N2 complexes of iron stabilised by N-heterocyclic ‘pincer’ dicarbene ligands. Chem. Commun. 784–786 (2005)
Yu, R. P. et al. High-activity iron catalysts for the hydrogenation of hindered, unfunctionalized alkenes. ACS Catal. 2, 1760–1764 (2012)
Yu, R. P. et al. Catalytic hydrogenation activity and electronic structure determination of bis(arylimidazol-2-ylidene)pyridine cobalt alkyl and hydride complexes. J. Am. Chem. Soc. 135, 13168–13184 (2013)
Vitaku, E., Smith, D. T. & Njardarson, J. T. Analysis of the structural diversity, substitution patterns, and frequency of nitrogen heterocycles among U.S. FDA approved pharmaceuticals. J. Med. Chem. 57, 10257–10274 (2014)
Taylor, R. D., MacCoss, M. & Lawson, A. D. G. Rings in drugs. J. Med. Chem. 57, 5845–5859 (2014)
Skaddan, M. B., Yung, C. M. & Bergman, R. G. Stoichiometric and catalytic deuterium and tritium labeling of ‘unactivated’ organic substrates with cationic Ir(III) complexes. Org. Lett. 6, 11–13 (2004)
Liu, J. K. & Couldwell, W. T. Intra-arterial papaverine infusions for the treatment of cerebral vasospasm induced by aneurysmal subarachnoid hemorrhage. Neurocrit. Care 2, 124–132 (2005)
Coleman, P. J. et al. Discovery of [(2R,5R)-5-{[(5-fluoropyridin-2-yl)oxy]methyl}-2-methylpiperidin-1-yl][5-methyl-2-(pyrimidin-2-yl)phenyl]methanone (MK-6096): a dual orexin receptor antagonist with potent sleep-promoting properties. ChemMedChem 7, 415–424 (2012)
Molinaro, C. et al. CRTH2 antagonist MK-7246: a synthetic evolution from discovery through development. J. Org. Chem. 77, 2299–2309 (2012)
Lischka, P. et al. In vitro and in vivo activities of the novel anticytomegalovirus compound AIC246. Antimicrob. Agents Chemother. 54, 1290–1297 (2010)
Nagasaki, T. et al. A new practical tritium labelling procedure using sodium borotritide and tetrakis(triphenylphosphine)palladium(0). J. Labelled Comp. Radiopharm. 44, 993–1004 (2001)
Acknowledgements
Merck and the Intellectual Property Accelerator Fund at Princeton University are acknowledged for financial support. We thank M. Tudge, I. Mergelsberg, L.-C. Campeau and I. Davies for discussions. We also thank D. Schenk and Y. Liu for assistance in 3H NMR assignments.
Author information
Authors and Affiliations
Contributions
R.P.Y. and P.J.C. discovered the iron-catalysed reaction. R.P.Y. performed initial deuterium exchange studies. R.P.Y. and I.P. performed the analysis of deuterium labelled products. I.P. developed and implemented the quantitative 13C NMR protocol for analysis of deuterium labelled products. R.P.Y., D.H. and N.R. performed and analysed tritium-labelling studies. R.P.Y., D.H. and P.J.C. prepared the manuscript.
Corresponding author
Ethics declarations
Competing interests
The authors have filed a provisional patent application on the composition of the catalyst and its use in radiolabelling of pharmaceuticals.
Supplementary information
Supplementary Information
This file contains Supplementary Text and Data, Supplementary Figures 1-21 and Supplementary References – see contents page for details. (PDF 13475 kb)
Rights and permissions
About this article
Cite this article
Pony Yu, R., Hesk, D., Rivera, N. et al. Iron-catalysed tritiation of pharmaceuticals. Nature 529, 195–199 (2016). https://doi.org/10.1038/nature16464
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1038/nature16464
This article is cited by
-
Scalable and selective deuteration of (hetero)arenes
Nature Chemistry (2022)
-
Aldehyde-catalysed carboxylate exchange in α-amino acids with isotopically labelled CO2
Nature Chemistry (2022)
-
One-pot H/D exchange and low-coordinated iron electrocatalyzed deuteration of nitriles in D2O to α,β-deuterio aryl ethylamines
Nature Communications (2022)
-
Recent advances in the chemistry and applications of N-heterocyclic carbenes
Nature Reviews Chemistry (2021)
-
Light-driven decarboxylative deuteration enabled by a divergently engineered photodecarboxylase
Nature Communications (2021)
Comments
By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.