Abstract
One of the key questions in observational cosmology is the identification of the sources responsible for ionization of the Universe after the cosmic ‘Dark Ages’, when the baryonic matter was neutral. The currently identified distant galaxies are insufficient to fully reionize the Universe by redshift z ≈ 6 (refs 1, 2, 3), but low-mass, star-forming galaxies are thought to be responsible for the bulk of the ionizing radiation4,5,6. As direct observations at high redshift are difficult for a variety of reasons, one solution is to identify local proxies of this galaxy population. Starburst galaxies at low redshifts, however, generally are opaque to Lyman continuum photons7,8,9. Small escape fractions of about 1 to 3 per cent, insufficient to ionize much surrounding gas, have been detected only in three low-redshift galaxies10,11. Here we report far-ultraviolet observations of the nearby low-mass star-forming galaxy J0925+1403. The galaxy is leaking ionizing radiation with an escape fraction of about 8 per cent. The total number of photons emitted during the starburst phase is sufficient to ionize intergalactic medium material that is about 40 times as massive as the stellar mass of the galaxy.
This is a preview of subscription content, access via your institution
Relevant articles
Open Access articles citing this article.
-
The CUBES science case
Experimental Astronomy Open Access 01 October 2022
Access options
Subscribe to this journal
Receive 51 print issues and online access
$199.00 per year
only $3.90 per issue
Rent or buy this article
Prices vary by article type
from$1.95
to$39.95
Prices may be subject to local taxes which are calculated during checkout




References
Robertson, B. E. et al. New constraints on cosmic reionisation from the 2012 Hubble Ultra Deep Field Campaign. Astrophys. J. 768, 71 (2013)
Steidel, C. C., Pettini, M. & Adelberger, K. L. Lyman-continuum emission from galaxies at z ≥ 3.4. Astrophys. J. 546, 665–671 (2001)
Iwata, I. et al. Detections of Lyman continuum from star-forming galaxies at z ~ 3 through Subaru/Suprime-Cam narrow-band imaging. Astrophys. J. 692, 1287–1293 (2009)
Mitra, S., Ferrara, A. & Choudhury, T. R. The escape fraction of ionising photons from high-redshift galaxies from data-constrained reionisation models. Mon. Not. R. Astron. Soc. 428, L1–L5 (2013)
Yajima, H., Choi, J.-H. & Nagamine, K. Escape fraction of ionising photons from high-redshift galaxies in cosmological SPH simulations. Mon. Not. R. Astron. Soc. 412, 411–422 (2011)
Wise, J. H. & Cen, R. Ionising photon escape fractions from high-redshift dwarf galaxies. Astrophys. J. 693, 984–999 (2009)
Leitherer, C., Ferguson, H. C., Heckman, T. M. & Lowenthal, J. D. The Lyman continuum in starburst galaxies observed with the Hopkins Ultraviolet Telescope. Astrophys. J. 454, L19–L22 (1995)
Deharveng, J.-M. et al. Constraints on the Lyman continuum radiation from galaxies: first results with FUSE on Mrk 54. Astron. Astrophys. 375, 805–813 (2001)
Grimes, J. P. et al. Observations of starburst galaxies with Far-Ultraviolet Spectrographic Explorer: galactic feedback in the Local Universe. Astrophys. J. Suppl. Ser. 181, 272–320 (2009)
Leitet, E., Bergvall, N., Hayes, M., Linné, S. & Zackrisson, E. Escape of Lyman continuum radiation from local galaxies. Detection of leakage from the young starburst Tol 1247–232. Astron. Astrophys. 553, A106 (2013)
Borthakur, S., Heckman, T. M., Leitherer, C. & Overzier, R. A. A local clue to the reionisation of the universe. Science 346, 216–219 (2014)
Cardamone, C. et al. Galaxy Zoo Green Peas: discovery of a class of compact extremely star-forming galaxies. Mon. Not. R. Astron. Soc. 399, 1191–1205 (2009)
Izotov, Y. I., Guseva, N. G. & Thuan, T. X. Green Pea galaxies and cohorts: luminous compact emission-line galaxies in the Sloan Digital Sky Survey. Astrophys. J. 728, 161 (2011)
Jaskot, A. E. & Oey, M. S. The origin and optical depth of ionising radiation in the “Green Pea” galaxies. Astrophys. J. 766, 91 (2013)
Stasińska, G., Izotov, Y., Morisset, C. & Guseva, N. Excitation properties of galaxies with the highest [O III]/[O II] ratios. No evidence for massive escape of ionising photons. Astron. Astrophys. 576, A83 (2015)
Nakajima, K. & Ouchi, M. Ionisation state of inter-stellar medium in galaxies: evolution, SFR–M*–Z dependence, and ionising photon escape. Mon. Not. R. Astron. Soc. 442, 900–916 (2014)
Jaskot, A. E. & Oey, M. S. Linking Lyalpha and low-ionisation transitions at low optical depth. Astrophys. J. 791, L19 (2014)
Henry, A., Scarlata, C., Martin, C. S. & Erb, D. Lyα emission from Green Peas: the role of circumgalactic gas density, covering, and kinematics. Astrophys. J. 809, 19 (2015)
Ade, P. A. et al. Planck 2013 results. XVI. Cosmological parameters. Astron. Astrophys. 571, A16 (2014)
Verhamme, A., Orlitová, I., Schaerer, D. & Hayes, M. Using Lyman-α to detect galaxies that leak Lyman continuum. Astron. Astrophys. 578, A7 (2015)
Hummer, D. G. & Storey, P. J. Recombination-line intensities for hydrogenic ions – I. Case B calculations for H I and He II. Mon. Not. R. Astron. Soc. 224, 801–820 (1987)
Cardelli, J. A., Clayton, G. C. & Mathis, J. S. The relationship between infrared, optical, and ultraviolet extinction. Astrophys. J. 345, 245–256 (1989)
Mathis, J. S. Interstellar dust and extinction. Annu. Rev. Astron. Astrophys. 28, 37–70 (1990)
Wide-field Infrared Survey Explorer (WISE) and NEOWISE. http://irsa.ipac.caltech.edu/Missions/wise.html (2013)
Izotov, Y. I. & Thuan, T. X. Near-infrared spectroscopy of five blue compact dwarf galaxies: II Zw 40, Mrk 71, Mrk 930, Mrk 996, and SBS 0335–052E. Astrophys. J. 734, 82 (2011)
Izotov, Y. I., Guseva, N. G., Fricke, K. J., Krügel, E. & Henkel, C. Dust emission in star-forming dwarf galaxies: general properties and the nature of the submm excess. Astron. Astrophys. 570, A97 (2014)
Izotov, Y. I., Guseva, N. G., Fricke, K. J. & Henkel, C. Multi-wavelength study of 14 000 star-forming galaxies from the Sloan Digital Sky Survey. Astron. Astrophys. 561, A33 (2014)
Izotov, Y. I., Guseva, N. G., Fricke, K. J. & Henkel, C. On the universality of luminosity-metallicity and mass-metallicity relations for compact star-forming galaxies at redshifts 0 < z < 3. Mon. Not. R. Astron. Soc. 451, 2251–2262 (2015)
Baldwin, J. A., Phillips, M. M. & Terlevich, R. Classification parameters for the emission-line spectra of extragalactic objects. Publ. Astron. Soc. Pacif. 93, 5–19 (1981)
Kauffmann, G. et al. Stellar masses and star formation histories for 105 galaxies from the Sloan Digital Sky Survey. Mon. Not. R. Astron. Soc. 341, 33–53 (2003)
Worseck, G. et al. The end of helium reionization at z ≃ 2.7 inferred from cosmic variance in HST/COS He II Lyα absorption spectra. Astrophys. J. 733, L24 (2011)
Syphers, D. et al. HST/COS observations of thirteen new He II quasars. Astron. J. 143, 100 (2012)
Murthy, J. GALEX diffuse observations of the sky: the data. Astrophys. J. Suppl. Ser. 213, 32 (2014)
Izotov, Y. I., Thuan, T. X. & Lipovetsky, V. A. The primordial helium abundance from a new sample of metal-deficient blue compact galaxies. Astrophys. J. 435, 647–667 (1994)
Izotov, Y. I., Stasińska, G., Meynet, G., Guseva, N. G. & Thuan, T. X. The chemical composition of metal-poor emission-line galaxies in the Data Release 3 of the Sloan Digital Sky Survey. Astron. Astrophys. 448, 955–970 (2006)
Guseva, N. G., Izotov, Y. I. & Thuan, T. X. Balmer and Paschen jump temperature determinations in low-metallicity emission-line galaxies. Astrophys. J. 644, 890–906 (2006)
Leitherer, C. et al. Starburst99: synthesis models for galaxies with active star formation. Astrophys. J. Suppl. Ser. 123, 3–40 (1999)
Leitherer, C. et al. The effects of stellar rotation. II. A comprehensive set of Starburst99 models. Astrophys. J. Suppl. Ser. 212, 14 (2014)
Meynet, G., Maeder, A., Schaller, G., Schaerer, D. & Charbonnel, C. Grids of massive stars with high mass loss rates. V. From 12 to 120 M⊙ at Z = 0.001, 0.004, 0.008, 0.020 and 0.040. Astron. Astrophys. Suppl. Ser. 103, 97–105 (1994)
Ekström, S. et al. Grids of stellar models with rotation. I. Models from 0.8 to 120 M⊙ at solar metallicity (Z = 0.014). Astron. Astrophys. 537, A146 (2012)
Girardi, L., Bressan, A., Bertelli, G. & Chiosi, C. Evolutionary tracks and isochrones for low- and intermediate-mass stars: from 0.15 to 7 M⊙, and from Z = 0.0004 to 0.03. Astron. Astrophys. Suppl. Ser. 141, 371–383 (2000)
Lejeune, T., Buser, R. & Cuisinier, F. Standard stellar library for evolutionary synthesis. I. Calibration of theoretical spectra. Astron. Astrophys. Suppl. Ser. 125, 229–246 (1997)
Schmutz, W., Leitherer, C. & Gruenwald, R. Theoretical continuum energy distributions for Wolf-Rayet stars. Publ. Astron. Soc. Pacif. 104, 1164–1172 (1992)
Hillier, D. J. & Miller, D. L. The treatment of non-LTE line blanketing in spherically expanding outflows. Astrophys. J. 496, 407–427 (1998)
Pauldrach, A. W. A. et al. Realistic Models for Expanding Atmospheres. In ASP Conf. Ser. Vol. 131, Properties of Hot, Luminous Stars (ed. Howarth, I. D. ) 258–277 (Astronomical Society of the Pacific, 1998)
Salpeter, E. E. The luminosity function and stellar evolution. Astrophys. J. 121, 161–167 (1955)
Kroupa, P. On the variation of the initial mass function. Mon. Not. R. Astron. Soc. 322, 231–246 (2001)
Aller, L. H. Physics of Thermal Gaseous Nebulae (Astrophysics and Space Science Library Vol. 112, Reidel, 1984)
Wright, E. L. A cosmology calculator for the World Wide Web. Publ. Astron. Soc. Pacif. 118, 1711–1715 (2006)
Kennicutt, R. C. Jr. Star formation in galaxies along the Hubble sequence. Annu. Rev. Astron. Astrophys. 36, 189–231 (1998)
Bouchet, P., Lequeux, J., Maurice, E., Prévot, L. & Prévot-Burnichon, M. L. The visible and infrared extinction law and the gas-to-dust ratio in the Small Magellanic Cloud. Astron. Astrophys. 149, 330–336 (1985)
Gordon, K. D. & Clayton, G. C. Starburst-like dust extinction in the Small Magellanic Cloud. Astrophys. J. 500, 816–824 (1998)
Gordon, K. D., Clayton, G. C., Misselt, K. A., Landolt, A. U. & Wolff, M. J. A quantitative comparison of the Small Magellanic Cloud, Large Magellanic Cloud, and Milky Way ultraviolet to near-infrared extinction curves. Astrophys. J. 594, 279–293 (2003)
Acknowledgements
This Letter is based on observations made with the NASA/ESA HST, obtained from the data archive at the Space Telescope Science Institute (STScI), which is operated by the Association of Universities for Research in Astronomy, Inc., under NASA contract NAS 5–26555. Support for this work was provided by NASA through grant number HST-GO-13744.001-A from the STScI. I.O. acknowledges a grant GACR 14–20666P of the Czech Science Foundation. The SDSS is managed by the Astrophysical Research Consortium for the Participating Institutions. GALEX is a NASA mission managed by the Jet Propulsion Laboratory. This research has made use of the NASA/IPAC Extragalactic Database (NED) which is operated by the Jet Propulsion Laboratory, California Institute of Technology, under contract with NASA.
Author information
Authors and Affiliations
Contributions
All authors participated in the design of the HST observational program. Y.I.I. and N.G.G. selected the galaxy sample. T.X.T. and Y.I.I. led the observations. G.W. reduced the HST data. I.O. did part of the HST data analysis. Y.I.I. and D.S. did the SED modelling and interpretation. A.V. and Y.I.I. did the Lyα interpretation. The bulk of the text was written by Y.I.I. All authors commented on the manuscript at all stages.
Corresponding author
Ethics declarations
Competing interests
The authors declare no competing financial interests.
Extended data figures and tables
Extended Data Figure 1 The diagnostic diagram for narrow emission lines.
The foundations of this diagram are given in ref. 29. The galaxy J0925+1403 is shown by a large filled star, and the Luminous Compact Galaxies13 by small dark-grey circles. Also plotted are the 100,000 emission-line galaxies from SDSS DR7 (cloud of light-grey dots). The solid line30 separates star-forming galaxies (SFG) from active galactic nuclei (AGN).
Extended Data Figure 2 SED fitting of the optical spectrum of J0925+1403.
The rest-frame extinction-corrected spectrum is shown by a grey line. The stellar, ionized gas, and total modelled SEDs are shown by black dotted, dashed and solid lines, respectively.
Extended Data Figure 3 A comparison of the observed ultraviolet and optical spectrum with the modelled SED.
The observed spectrum is shown by a grey line. The total GALEX and SDSS photometric fluxes are represented by filled squares and filled circles, respectively, while the SDSS photometric fluxes within a round spectroscopic aperture of 3″ diameter are shown by open circles. Modelled SEDs, which are reddened by the Milky Way with RV,MW = 3.1 and internal extinction with different values of RV,int, are shown by black lines. Dotted, dashed and solid lines correspond to RV,int = 3.1, 2.7, and 2.4, respectively.
Rights and permissions
About this article
Cite this article
Izotov, Y., Orlitová, I., Schaerer, D. et al. Eight per cent leakage of Lyman continuum photons from a compact, star-forming dwarf galaxy. Nature 529, 178–180 (2016). https://doi.org/10.1038/nature16456
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1038/nature16456
This article is cited by
-
These ‘green pea’ galaxies might have helped to end the Universe’s dark age
Nature (2023)
-
The CUBES science case
Experimental Astronomy (2023)
-
Chemical and stellar properties of star-forming dwarf galaxies
Nature Astronomy (2022)
-
AstroSat: Concept to achievements
Journal of Astrophysics and Astronomy (2021)
-
AstroSat detection of Lyman continuum emission from a z = 1.42 galaxy
Nature Astronomy (2020)
Comments
By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.