• An Erratum to this article was published on 13 January 2016

Abstract

Inactivation of the TNFAIP3 gene, encoding the A20 protein, is associated with critical inflammatory diseases including multiple sclerosis, rheumatoid arthritis and Crohn’s disease. However, the role of A20 in attenuating inflammatory signalling is unclear owing to paradoxical in vitro and in vivo findings. Here we utilize genetically engineered mice bearing mutations in the A20 ovarian tumour (OTU)-type deubiquitinase domain or in the zinc finger-4 (ZnF4) ubiquitin-binding motif to investigate these discrepancies. We find that phosphorylation of A20 promotes cleavage of Lys63-linked polyubiquitin chains by the OTU domain and enhances ZnF4-mediated substrate ubiquitination. Additionally, levels of linear ubiquitination dictate whether A20-deficient cells die in response to tumour necrosis factor. Mechanistically, linear ubiquitin chains preserve the architecture of the TNFR1 signalling complex by blocking A20-mediated disassembly of Lys63-linked polyubiquitin scaffolds. Collectively, our studies reveal molecular mechanisms whereby A20 deubiquitinase activity and ubiquitin binding, linear ubiquitination, and cellular kinases cooperate to regulate inflammation and cell death.

Access optionsAccess options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

References

  1. 1.

    , , & A20 in inflammation and autoimmunity. Trends Immunol. 35, 22–31 (2014)

  2. 2.

    et al. Failure to regulate TNF-induced NF-κB and cell death responses in A20-deficient mice. Science 289, 2350–2354 (2000)

  3. 3.

    , , & NF-κB inducers upregulate cFLIP, a cycloheximide-sensitive inhibitor of death receptor signaling. Mol. Cell. Biol. 21, 3964–3973 (2001)

  4. 4.

    et al. Enterocyte-specific A20 deficiency sensitizes to tumor necrosis factor-induced toxicity and experimental colitis. J. Exp. Med. 207, 1513–1523 (2010)

  5. 5.

    et al. The ubiquitin-modifying enzyme A20 restricts ubiquitination of the kinase RIPK3 and protects cells from necroptosis. Nature Immunol. 16, 618–627 (2015)

  6. 6.

    & Structure of the A20 OTU domain and mechanistic insights into deubiquitination. Biochem. J. 409, 77–85 (2008)

  7. 7.

    et al. Molecular basis for the unique deubiquitinating activity of the NF-κB inhibitor A20. J. Mol. Biol. 376, 526–540 (2008)

  8. 8.

    et al. De-ubiquitination and ubiquitin ligase domains of A20 downregulate NF-κB signalling. Nature 430, 694–699 (2004)

  9. 9.

    et al. Ubiquitin binding to A20 ZnF4 is required for modulation of NF-κB signaling. Mol. Cell 40, 548–557 (2010)

  10. 10.

    , & Inhibition of NF-κB signaling by A20 through disruption of ubiquitin enzyme complexes. Science 327, 1135–1139 (2010)

  11. 11.

    , & A novel superfamily of predicted cysteine proteases from eukaryotes, viruses and Chlamydia pneumoniae. Trends Biochem. Sci. 25, 50–52 (2000)

  12. 12.

    et al. Blockade of tumour necrosis factor-α in experimental autoimmune encephalomyelitis reveals differential effects on the antigen-specific immune response and central nervous system histopathology. Clin. Exp. Immunol. 175, 41–48 (2014)

  13. 13.

    et al. Dimerization and ubiquitin mediated recruitment of A20, a complex deubiquitinating enzyme. Immunity 38, 896–905 (2013)

  14. 14.

    , , , & Two-sided ubiquitin binding explains specificity of the TAB2 NZF domain. Nature Struct. Mol. Biol. 16, 1328–1330 (2009)

  15. 15.

    et al. Structural basis for specific recognition of Lys 63-linked polyubiquitin chains by tandem UIMs of RAP80. EMBO J. 28, 2461–2468 (2009)

  16. 16.

    & Ubiquitin-binding proteins: decoders of ubiquitin-mediated cellular functions. Annu. Rev. Biochem. 81, 291–322 (2012)

  17. 17.

    et al. Specific recognition of linear ubiquitin chains by NEMO is important for NF-κB activation. Cell 136, 1098–1109 (2009)

  18. 18.

    et al. NF-κB essential modulator (NEMO) interaction with linear and lys-63 ubiquitin chains contributes to NF-κB activation. J. Biol. Chem. 286, 26107–26117 (2011)

  19. 19.

    et al. IκB kinase beta phosphorylates the K63 deubiquitinase A20 to cause feedback inhibition of the NF-κB pathway. Mol. Cell. Biol. 27, 7451–7461 (2007)

  20. 20.

    et al. A20 protects endothelial cells from TNF-, Fas-, and NK-mediated cell death by inhibiting caspase 8 activation. Blood 104, 2376–2384 (2004)

  21. 21.

    et al. Nuclear factor-κB regulates β-cell death: a critical role for A20 in beta-cell protection. Diabetes 55, 2491–2501 (2006)

  22. 22.

    et al. Recruitment of the linear ubiquitin chain assembly complex stabilizes the TNF-R1 signaling complex and is required for TNF-mediated gene induction. Mol. Cell 36, 831–844 (2009)

  23. 23.

    et al. Linear ubiquitination prevents inflammation and regulates immune signalling. Nature 471, 591–596 (2011)

  24. 24.

    et al. SHARPIN is a component of the NF-κB-activating linear ubiquitin chain assembly complex. Nature 471, 633–636 (2011)

  25. 25.

    et al. SHARPIN forms a linear ubiquitin ligase complex regulating NF-κB activity and apoptosis. Nature 471, 637–641 (2011)

  26. 26.

    et al. HOIP deficiency causes embryonic lethality by aberrant TNFR1-mediated endothelial cell death. Cell Reports 9, 153–165 (2014)

  27. 27.

    et al. TNFR1-dependent cell death drives inflammation in Sharpin-deficient mice. eLife 3, e03464 (2014)

  28. 28.

    et al. Sharpin prevents skin inflammation by inhibiting TNFR1-induced keratinocyte apoptosis. eLife 3, e03422 (2014)

  29. 29.

    , & Generation and physiological roles of linear ubiquitin chains. BMC Biol. 10, 23 (2012)

  30. 30.

    et al. Cell fate decisions regulated by K63 ubiquitination of tumor necrosis factor receptor 1. Mol. Cell. Biol. 34, 3214–3228 (2014)

  31. 31.

    & Death receptors: signaling and modulation. Science 281, 1305–1308 (1998)

  32. 32.

    & Induction of TNF receptor I-mediated apoptosis via two sequential signaling complexes. Cell 114, 181–190 (2003)

  33. 33.

    et al. OTU deubiquitinases reveal mechanisms of linkage specificity and enable ubiquitin chain restriction analysis. Cell 154, 169–184 (2013)

  34. 34.

    et al. The linear ubiquitin-specific deubiquitinase gumby regulates angiogenesis. Nature 498, 318–324 (2013)

  35. 35.

    et al. OTULIN antagonizes LUBAC signaling by specifically hydrolyzing Met1-linked polyubiquitin. Cell 153, 1312–1326 (2013)

  36. 36.

    , , & The deubiquitinase activity of A20 is dispensable for NF-κB signaling. EMBO Rep. 15, 775–783 (2014)

  37. 37.

    et al. Activation of the canonical IKK complex by K63/M1-linked hybrid ubiquitin chains. Proc. Natl Acad. Sci. USA 110, 15247–15252 (2013)

  38. 38.

    et al. The ubiquitin-editing enzyme A20 restricts nucleotide-binding oligomerization domain containing 2-triggered signals. Immunity 28, 381–390 (2008)

  39. 39.

    et al. OTULIN restricts Met1-linked ubiquitination to control innate immune signaling. Mol. Cell 50, 818–830 (2013)

  40. 40.

    et al. Specific recognition of linear polyubiquitin by A20 zinc finger 7 is involved in NF-κB regulation. EMBO J. 31, 3856–3870 (2012)

  41. 41.

    et al. A20 inhibits LUBAC-mediated NF-κB activation by binding linear polyubiquitin chains via its zinc finger 7. EMBO J. 31, 3845–3855 (2012)

  42. 42.

    et al. Direct, noncatalytic mechanism of IKK inhibition by A20. Mol. Cell 44, 559–571 (2011)

  43. 43.

    & A20: linking a complex regulator of ubiquitylation to immunity and human disease. Nature Rev. Immunol. 12, 774–785 (2012)

  44. 44.

    & The seventh zinc finger motif of A20 is required for the suppression of TNF-α-induced apoptosis. FEBS Lett. 589, 1369–1375 (2015)

  45. 45.

    & The ubiquitin code. Annu. Rev. Biochem. 81, 203–229 (2012)

  46. 46.

    et al. E3-independent monoubiquitination of ubiquitin-binding proteins. Mol. Cell 26, 891–898 (2007)

  47. 47.

    , , & RING-type E3 ligases: master manipulators of E2 ubiquitin-conjugating enzymes and ubiquitination. Biochim. Biophys. Acta 1843, 47–60 (2014)

  48. 48.

    et al. Molecular discrimination of responders and nonresponders to anti-TNFalpha therapy in rheumatoid arthritis by etanercept. Arthritis Res. Ther. 10, R50 (2008)

  49. 49.

    et al. A resource for cell line authentication, annotation and quality control. Nature 520, 307–311 (2015)

  50. 50.

    et al. Sensitivity to antitubulin chemotherapeutics is regulated by MCL1 and FBW7. Nature 471, 110–114 (2011)

Download references

Acknowledgements

The authors thank J. Ernst, N. Kayagaki, K. O’Rourke, S. Hymowitz, I. Bosanac, E. Varfolomeev, T. Goncharov, M. diAlmagro, Z. Zhang, C. Klijn, D. Bustos, A. Maltzman, K. Wickliffe, J. Heideker, P. Liu, A. Ashkenazi, T.-K. Chang, B. Brasher, and C. Schwerdtfeger for reagents and discussions, A. Ma for A20 null MEFs, and the Genentech Protein Expression Group, Sequencing Facility, Luminex Core Group, Animal Facility and Genotyping Laboratory, J. Z. Solorio and M. Roose-Girma and the Mouse Models Group for dedication and support.

Author information

Author notes

    • Saritha Kusam

    Present address: Gilead Sciences, Inc., Department of Biology, Foster City, California 94404, USA.

Affiliations

  1. Discovery Oncology, Genentech, South San Francisco, California 94080, USA

    • Ingrid E. Wertz
    •  & Lorna Kategaya
  2. Early Discovery Biochemistry, Genentech, South San Francisco, California 94080, USA

    • Ingrid E. Wertz
    • , Saritha Kusam
    • , Cynthia Lam
    • , Nataliya Popovych
    • , Elizabeth Helgason
    • , Allyn Schoeffler
    • , Lorna Kategaya
    • , Anuradha Zindal
    • , Clifford Quan
    • , Jeffrey Tom
    • , Wayne J. Fairbrother
    •  & Erin Dueber
  3. Physiological Chemistry, Genentech, South San Francisco, California 94080, USA

    • Kim Newton
    • , Debra Dugger
    •  & Vishva M. Dixit
  4. Immunology, Genentech, South San Francisco, California 94080, USA

    • Dhaya Seshasayee
    • , Juan Zhang
    • , Surinder Jeet
    • , Nandhini Ramamoorthi
    • , Flavius Martin
    • , Michael Townsend
    • , Jason DeVoss
    • , Wyne P. Lee
    •  & Mercedesz Balazs
  5. Molecular Biology, Genentech, South San Francisco, California 94080, USA

    • Robert J. Newman
    • , Søren Warming
    •  & Ganesh Kolumam
  6. Department of Cancer Biology and Therapeutics, The John Curtin School of Medical Research, The Australian National University, Canberra, Australian Capital Territory 2601, Australia

    • Keisuke Horikawa
  7. Protein Chemistry, Genentech, South San Francisco, California 94080, USA

    • Wendy Sandoval
    •  & Kebing Yu
  8. Structural Biology, Genentech, South San Francisco, California 94080, USA.

    • Susmith Mukund
  9. Bioinformatics, Genentech, South San Francisco, California 94080, USA

    • Jinfeng Liu
  10. Pathology, Genentech, South San Francisco, California 94080, USA

    • Patrick Caplazi
  11. Immunogenomics Laboratory, Immunology Division, Garvan Institute of Medical Research, 384 Victoria Street, Darlinghurst, New South Wales 2010, Sydney, Australia

    • Christopher C. Goodnow

Authors

  1. Search for Ingrid E. Wertz in:

  2. Search for Kim Newton in:

  3. Search for Dhaya Seshasayee in:

  4. Search for Saritha Kusam in:

  5. Search for Cynthia Lam in:

  6. Search for Juan Zhang in:

  7. Search for Nataliya Popovych in:

  8. Search for Elizabeth Helgason in:

  9. Search for Allyn Schoeffler in:

  10. Search for Surinder Jeet in:

  11. Search for Nandhini Ramamoorthi in:

  12. Search for Lorna Kategaya in:

  13. Search for Robert J. Newman in:

  14. Search for Keisuke Horikawa in:

  15. Search for Debra Dugger in:

  16. Search for Wendy Sandoval in:

  17. Search for Susmith Mukund in:

  18. Search for Anuradha Zindal in:

  19. Search for Flavius Martin in:

  20. Search for Clifford Quan in:

  21. Search for Jeffrey Tom in:

  22. Search for Wayne J. Fairbrother in:

  23. Search for Michael Townsend in:

  24. Search for Søren Warming in:

  25. Search for Jason DeVoss in:

  26. Search for Jinfeng Liu in:

  27. Search for Erin Dueber in:

  28. Search for Patrick Caplazi in:

  29. Search for Wyne P. Lee in:

  30. Search for Christopher C. Goodnow in:

  31. Search for Mercedesz Balazs in:

  32. Search for Kebing Yu in:

  33. Search for Ganesh Kolumam in:

  34. Search for Vishva M. Dixit in:

Contributions

I.E.W., C.L., F.M., M.T., E.D., W.P.L., C.C.G., M.B. and V.M.D. coordinated studies. I.E.W., K.N., S.K., D.S., J.Z., N.P., E.H., A.S., S.J., N.R., L.K., K.H., D.D., W.S., A.Z., S.M., J.D.V., E.D., K.Y. and G.K. designed and performed experiments. I.E.W., K.N., D.S., J.Z., N.P., E.H., A.S., S.J., N.R., L.K., K.H., D.D., W.S., F.M., C.Q., W.J.F., M.T., S.W., J.D.V., J.L., E.D., P.C., W.P.L., C.C.G., M.B., K.Y., G.K. and V.M.D. interpreted data. I.E.W. wrote the manuscript. I.E.W., K.N., N.P., S.M., E.H., R.J.N., C.Q., J.T. and S.W. prepared reagents.

Competing interests

I.E.W., K.N., D.S., S.K., C.L., J.Z., N.P., E.H., A.S., S.J., N.R., L.K., R.J.N., D.D., W.S., S.M., A.Z., F.M., C.Q., J.T., W.J.F., M.T., S.W., J.D.V., J.L., E.D., P.C., W.P.L., M.B., K.Y., G.K. and V.M.D. are currently or have been employees of Genentech.

Corresponding authors

Correspondence to Ingrid E. Wertz or Vishva M. Dixit.

Extended data

Supplementary information

PDF files

  1. 1.

    Supplementary Figures

    This file contains Supplementary Figures A-G.

Zip files

  1. 1.

    Supplementary Data

    This zipped file contains the raw data for the Figures in the main paper and for the Extended Data Figures.

About this article

Publication history

Received

Accepted

Published

DOI

https://doi.org/10.1038/nature16165

Further reading

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.