Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Rarity in mass extinctions and the future of ecosystems

Abstract

The fossil record provides striking case studies of biodiversity loss and global ecosystem upheaval. Because of this, many studies have sought to assess the magnitude of the current biodiversity crisis relative to past crises—a task greatly complicated by the need to extrapolate extinction rates. Here we challenge this approach by showing that the rarity of previously abundant taxa may be more important than extinction in the cascade of events leading to global changes in the biosphere. Mass rarity may provide the most robust measure of our current biodiversity crisis relative to those past, and new insights into the dynamics of mass extinction.

This is a preview of subscription content

Access options

Buy article

Get time limited or full article access on ReadCube.

$32.00

All prices are NET prices.

Figure 1: Mass rarity and mass extinction are indistinguishable in the fossil record, and may have the same ecosystem effects.
Figure 2: The sequence of taxonomic and ecosystem events across extinctions is unclear.
Figure 3: The geological brevity of mass extinctions makes it difficult to discern the relative importance of various processes.

References

  1. Barnosky, A. D. et al. Has the Earth’s sixth mass extinction already arrived? Nature 471, 51–57 (2011). A powerful marshalling of the paleontological evidence for a 6th mass extinction, in a paper that sparked much subsequent discussion and research

    CAS  Article  ADS  PubMed  Google Scholar 

  2. Kolbert, E. The Sixth Extinction: an Unnatural History 1–319 (Holt, 2014)

  3. Alvarez, L. W., Alvarez, W., Asaro, F. & Michel, H. V. Extraterrestrial cause for the cretaceous-tertiary extinction. Science 208, 1095–1108 (1980)

    CAS  Article  ADS  PubMed  Google Scholar 

  4. Erwin, D. H. Extinction: How Life on Earth Nearly Ended 250 Million Years Ago (Princeton Univ. Press, 2006)

  5. Wagner, P. J., Kosnik, M. A. & Lidgard, S. Abundance distributions imply elevated complexity of post-Paleozoic marine ecosystems. Science 314, 1289–1292 (2006). A key example of the profound potential of mass extinctions to permanently shift the structure of ecosystems

    CAS  Article  ADS  PubMed  Google Scholar 

  6. Sahney, S., Benton, M. J. & Ferry, P. A. Links between global taxonomic diversity, ecological diversity and the expansion of vertebrates on land. Biol. Lett. 6, 544–547 (2010)

    Article  PubMed  PubMed Central  Google Scholar 

  7. Jablonski, D. Mass extinctions and macroevolution. Paleobiology 31, 192–210 (2005)

    Article  Google Scholar 

  8. Brusatte, S. L., Benton, M. J., Ruta, M. & Lloyd, G. T. Superiority, competition, and opportunism in the evolutionary radiation of dinosaurs. Science 321, 1485–1488 (2008)

    CAS  Article  ADS  PubMed  Google Scholar 

  9. Alroy, J. Dynamics of origination and extinction in the marine fossil record. Proc. Natl Acad. Sci. USA 105 (Suppl. 1), 11536–11542 (2008)

    CAS  Article  ADS  PubMed  PubMed Central  Google Scholar 

  10. Raup, D. M. & Sepkoski, J. J. Jr. Mass extinctions in the marine fossil record. Science 215, 1501–1503 (1982)

    CAS  Article  ADS  PubMed  Google Scholar 

  11. Harnik, P. G. et al. Extinctions in ancient and modern seas. Trends Ecol. Evol. 27, 608–617 (2012)

    Article  PubMed  Google Scholar 

  12. Hull, P. M. & Darroch, S. A. F. in Ecosystems Paleobiology and Geobiology. The Paleontological Society Papers Vol. 19 (eds A. M. Bush, S. B. Pruss, & J. L. Payne ) 115–156 (Geological Soc. America, 2013)

    Article  Google Scholar 

  13. Erwin, D. H. Lessons from the past: biotic recoveries from mass extinctions. Proc. Natl Acad. Sci. USA 98, 5399–5403 (2001)

    CAS  Article  ADS  PubMed  PubMed Central  Google Scholar 

  14. Bambach, R. K. Phanerozoic biodiversity mass extinctions. Annu. Rev. Earth Planet. Sci. 34, 127–155 (2006)

    CAS  Article  ADS  Google Scholar 

  15. Sepkoski, J. J. in Patterns and Processes in the History of Life (eds D. M. Raup & D. Jablonski ) 277–295 (Springer-Verlag, 1986)

  16. Erwin, D. H. The end and the bueginning: recoveries from mass extinctions. Trends Ecol. Evol. 13, 344–349 (1998)

  17. Schmitz, O. J. et al. From individuals to ecosystem function: toward an integration of evolutionary and ecosystem ecology. Ecology 89, 2436–2445 (2008)

    Article  PubMed  Google Scholar 

  18. Erwin, D. H. Temporal acuity and the rate and dynamics of mass extinctions. Proc. Natl Acad. Sci. USA 111, 3203–3204 (2014)

    CAS  Article  ADS  PubMed  PubMed Central  Google Scholar 

  19. Hull, P. M., Norris, R. D., Bralower, T. J. & Schueth, J. D. A role for chance in marine recovery from the end-Cretaceous extinction. Nat. Geosci. (2011)

  20. Chen, Z.-Q. & Benton, M. J. The timing and pattern of biotic recovery following the end-Permian mass extinction. Nat. Geosci. 5, 375–383 (2012)

    CAS  Article  ADS  Google Scholar 

  21. Twitchett, R. J. The Lilliput effect in the aftermath of the end-Permian extinction event. Palaeogeogr. Palaeoclimatol. Palaeoecol. 252, 132–144 (2007)

    Article  Google Scholar 

  22. Payne, J. L. Evolutionary dynamics of gastropod size across the end-Permian extinction and through the Triassic recovery interval. Paleobiology 31, 269–290 (2005)

    Article  Google Scholar 

  23. Droser, M. L., Bottjer, D. J., Sheehan, P. M. & McGhee, G. R. Decoupling of taxonomic and ecologic severity of Phanerozoic marine mass extinctions. Geology 28, 675–678 (2000)

    Article  ADS  Google Scholar 

  24. Wood, R. Reef Evolution (Oxford Univ. Press, 1999)

  25. Sepkoski, J. J. A factor analytic description of the Phanerozoic marine fossil record. Paleobiology 7, 36–53 (1981)

    Article  Google Scholar 

  26. Solé, R. V., Saldaña, J., Montoya, J. M. & Erwin, D. H. Simple model of recovery dynamics after mass extinction. J. Theor. Biol. 267, 193–200 (2010)

    Article  MathSciNet  PubMed  MATH  Google Scholar 

  27. Bambach, R. K., Knoll, A. H. & Sepkoski, J. J. Jr. Anatomical and ecological constraints on Phanerozoic animal diversity in the marine realm. Proc. Natl Acad. Sci. USA 99, 6854–6859 (2002)

    CAS  Article  ADS  PubMed  PubMed Central  Google Scholar 

  28. Sepkoski, J. J. Jr. Biodiversity: past, present, and future. J Paleo 71, 533–539 (1997)

    Article  Google Scholar 

  29. Ceballos, G. et al. Accelerated modern human-induced species losses: entering the sixth mass extinction. Science Advances 1, e1400253 (2015)

    Article  ADS  PubMed  PubMed Central  Google Scholar 

  30. Naeem, S., Duffy, J. E. & Zavaleta, E. The functions of biological diversity in an age of extinction. Science 336, 1401–1406 (2012). A review of the multifarious impacts that a change in ecosystem structure can have on ecosystem function

    CAS  Article  ADS  PubMed  Google Scholar 

  31. Tittensor, D. P. et al. A mid-term analysis of progress toward international biodiversity targets. Science 346, 241–244 (2014)

    CAS  Article  ADS  PubMed  Google Scholar 

  32. Halpern, B. S. et al. A global map of human impact on marine ecosystems. Science 319, 948–952 (2008)

    CAS  Article  ADS  PubMed  Google Scholar 

  33. McGill, B. J., Dornelas, M., Gotelli, N. J. & Magurran, A. E. Fifteen forms of biodiversity trend in the Anthropocene. Trends Ecol. Evol. 30, 104–113 (2015)

    Article  PubMed  Google Scholar 

  34. Newbold, T. et al. Global effects of land use on local terrestrial biodiversity. Nature 520, 45–50 (2015)

    CAS  Article  ADS  PubMed  Google Scholar 

  35. MacNeil, M. A. et al. Recovery potential of the world’s coral reef fishes. Nature 520, 341–344 (2015)

    CAS  Article  ADS  PubMed  Google Scholar 

  36. Pandolfi, J. M. et al. Global trajectories of the long-term decline of coral reef ecosystems. Science 301, 955–958 (2003)

    CAS  Article  ADS  PubMed  Google Scholar 

  37. Worm, B. & Tittensor, D. P. Range contraction in large pelagic predators. Proc. Natl Acad. Sci. USA 108, 11942–11947 (2011)

    CAS  Article  ADS  PubMed  PubMed Central  Google Scholar 

  38. McCauley, D. J. et al. Marine defaunation: animal loss in the global ocean. Science 347, 1255641 (2015). The proximate trigger for one of us (P.M.H.) to begin pondering the importance of rarity during events of geological proportion

    Article  CAS  PubMed  Google Scholar 

  39. Ceballos, G. & Ehrlich, P. R. Mammal population losses and the extinction crisis. Science 296, 904–907 (2002)

    CAS  Article  ADS  PubMed  Google Scholar 

  40. Dornelas, M. et al. Assemblage time series reveal biodiversity change but not systematic loss. Science 344, 296–299 (2014)

    CAS  Article  ADS  PubMed  Google Scholar 

  41. Hughes, J. B., Daily, G. C. & Ehrlich, P. R. Population diversity: its extent and extinction. Science 278, 689–692 (1997)

    CAS  Article  ADS  PubMed  Google Scholar 

  42. Baum, J. K. et al. Collapse and conservation of shark populations in the Northwest Atlantic. Science 299, 389–392 (2003)

    CAS  Article  ADS  PubMed  Google Scholar 

  43. Myers, R. A. & Worm, B. Rapid worldwide depletion of predatory fish communities. Nature 423, 280–283 (2003)

    CAS  Article  ADS  PubMed  Google Scholar 

  44. Dulvy, N. K., Sadovy, Y. & Reynolds, J. D. Extinction vulnerability in marine populations. Fish Fish. 4, 25–64 (2003)

    Article  Google Scholar 

  45. Worm, B. et al. Impacts of biodiversity loss on ocean ecosystem services. Science 314, 787–790 (2006)

    CAS  Article  ADS  PubMed  Google Scholar 

  46. Edgar, G. J. et al. Global conservation outcomes depend on marine protected areas with five key features. Nature 506, 216–220 (2014)

    CAS  Article  ADS  PubMed  Google Scholar 

  47. Lotze, H. K., Coll, M., Magera, A. M., Ward-Paige, C. & Airoldi, L. Recovery of marine animal populations and ecosystems. Trends Ecol. Evol. 26, 595–605 (2011)

    Article  PubMed  Google Scholar 

  48. Rabinowitz, D. in The biological aspects of rare plant conservation (ed. H. Synge ) 205–217 (Wiley, 1981)

  49. Sperling, E. A. in Ecosystems Paleobiology and Geobiology. The Paleontological Society Papers Vol. 19 (eds A. M. Bush, S. B. Pruss, & J. L. Payne ) 77–86 (Geological Soc. America, 2013)

    Article  Google Scholar 

  50. Schopf, T. J. M. Fossilization potential of an intertidal fauna: Friday Harbor, Washington. Paleobiology 4, 261–270 (1978)

    Article  Google Scholar 

  51. Briggs, D. E. G. The role of decay and mineralization in the preservation of soft-bodied fossils. Annu. Rev. Earth Planet. Sci. 31, 275–301 (2003)

    CAS  Article  ADS  Google Scholar 

  52. Benton, M. J. Biodiversity on land and in the sea. Geol. J. 36, 211–230 (2001)

    Article  Google Scholar 

  53. Benton, M. J. Diversification and extinction in the history of life. Science 268, 52–58 (1995)

    CAS  Article  ADS  PubMed  Google Scholar 

  54. Nee, S. & May, R. M. Dynamics of metapopulations: habitat destruction and competitive coexistence. J. Anim. Ecol. 61, 37–40 (1992)

    Article  Google Scholar 

  55. Tilman, D. et al. Habitat destruction and the extinction debt. Nature 371, 65–66 (1994). The paper that defined extinction debt and made a strong case for the importance of events that occur long before the last individual dies in ecosystem change and extinction

    Article  ADS  Google Scholar 

  56. Twitchett, R. J. Incompleteness of the Permian-Triassic fossil record: a consequence of productivity decline? Geol. J. 36, 341–353 (2001)

    Article  Google Scholar 

  57. Twitchett, R. J., Wignall, P. B. & Benton, M. J. Discussion on Lazarus taxa and fossil abundance at times of biotic crisis. J. Geol. Soc. Lond. 157, 511–512 (2000)

    Article  Google Scholar 

  58. Marshall, C. R. in Quantitative Methods in Paleobiology (eds Alroy, J. & Hunt, G. ) 291–316 (The Paleontological Society, 2010)

  59. Gardmark, A. et al. Regime shifts in exploited marine food webs: detecting mechanisms underlying alternative stable states using size-structured community dynamics theory. Phil. Trans. R. Soc. Lond. B 370, 20130262 (2014)

    Article  Google Scholar 

  60. deYoung, B. et al. Regime shifts in marine ecosystems: detection, prediction and management. Trends Ecol. Evol. 23, 402–409 (2008)

    Article  PubMed  Google Scholar 

  61. Jackson, J. B. C. What was natural in the coastal oceans? Proc. Natl Acad. Sci. USA 98, 5411–5418 (2001)

    CAS  Article  ADS  PubMed  PubMed Central  Google Scholar 

  62. Rothschild, B. J., Ault, J. S., Goulletquer, P. & Heral, M. Decline of the Chesapeake Bay oyster population: a century of habitat destruction and overfishing. Mar. Ecol. Prog. Ser. 111, 29–39 (1994)

    Article  ADS  Google Scholar 

  63. Frank, K. T., Petrie, B., Choi, J. S. & Leggett, W. C. Trophic cascades in a formerly cod-dominated ecosystem. Science 308, 1621–1623 (2005)

    CAS  Article  ADS  PubMed  Google Scholar 

  64. Jackson, J. B. C., Donovan, M. K., Cramer, K. L. & Lam, W. Status and Trends of Carribean Coral Reefs: 1970–2012. (Global Coral Reef Monitoring Network, IUCN, 2014)

  65. Levin, P. S. & Möllmann, C. Marine ecosystem regime shifts: challenges and opportunities for ecosystem-based management. Phil. Trans. R. Soc. Lond. B 370, 20130275 (2014)

    Article  Google Scholar 

  66. Wood, R. The changing biology of reef-building. Palaios 10, 517–529 (1995)

    Article  ADS  Google Scholar 

  67. Kiessling, W. & Simpson, C. On the potential for ocean acidification to be a general cause of ancient reef crises. Glob. Change Biol. 17, 56–67 (2011)

    Article  ADS  Google Scholar 

  68. Crane, P. R., Friis, E. M. & Pedersen, K. R. The origin and early diversification of angiosperms. Nature 374, 27–33 (1995)

    CAS  Article  ADS  Google Scholar 

  69. Edwards, E. J. et al.; C4 Grasses Consortium. The origins of C4 grasslands: integrating evolutionary and ecosystem science. Science 328, 587–591 (2010)

    CAS  Article  ADS  PubMed  Google Scholar 

  70. Harries, P. J., Kauffman, E. G. & Hansen, T. A. in Biotic Recovery from Mass Extinction Events. Geological Society of London Special Publication 102 (ed. M. B. Hart ) 41–60 (1996)

  71. Kauffman, E. G. & Erwin, D. H. Surviving mass extinctions. Geotimes 40, 14–17 (1995)

    Google Scholar 

  72. Jablonski, D. in Dynamics of Extinction (ed. Elliott, D. K. ) 183–229 (Wiley, 1986)

  73. Erwin, D. in Evolutionary paleobiology (eds Jablonski, D., Erwin, D. H. & Lipps, J. H. ) 398–418 (Univ. Chicago Press, 1996)

  74. Rong, J. Y., Boucot, A. J., Harper, D. A. T., Zhan, R. B. & Neuman, R. B. Global analyses of brachiopod faunas through the Ordovician and Silurian transition: reducing the role of the Lazarus effect. Can. J. Earth Sci. 43, 23–39 (2006)

    Article  ADS  Google Scholar 

  75. Surlyk, F. & Johansen, M. B. End-cretaceous brachiopod extinctions in the chalk of denmark. Science 223, 1174–1177 (1984)

    CAS  Article  ADS  PubMed  Google Scholar 

  76. Casier, J. G. & Lethiers, F. Ostracods surviving the F/F event in the Devils Gate Pass Section (Nevada, USA). Geobios 30, 811–821 (1997)

    Article  Google Scholar 

  77. Smith, J. L. B. A living fish of Mesozoic type. Nature 143, 455–456 (1939)

    Article  ADS  Google Scholar 

  78. Hagino, K. et al. Re-discovery of a “living fossil” coccolithophore from the coastal waters of Japan and Croatia. Mar. Micropaleontol. 116, 28–37 (2015)

    Article  ADS  Google Scholar 

  79. Jablonski, D. Survival without recovery after mass extinctions. Proc. Natl Acad. Sci. USA 99, 8139–8144 (2002). The first detailed documentation of the importance of delayed extinctions across mass extinction boundaries

    CAS  Article  ADS  PubMed  PubMed Central  Google Scholar 

  80. Jablonski, D. Lessons from the past: evolutionary impacts of mass extinctions. Proc. Natl Acad. Sci. USA 98, 5393–5398 (2001)

    CAS  Article  ADS  PubMed  PubMed Central  Google Scholar 

  81. Kaim, A. & Nutzel, A. Dead bellerophontids walking - The short Mesozoic history of the Bellerophontoidea (Gastropoda). Palaeogeogr. Palaeoclimatol. Palaeoecol. 308, 190–199 (2011)

    Article  Google Scholar 

  82. Schubert, J. K. & Bottjer, D. J. Early Triassic stromatolites as post mass extinction disaster forms. Geology 20, 883–886 (1992)

    Article  ADS  Google Scholar 

  83. Ritterbush, K. A., Bottjer, D. J., Corsetti, F. A. & Rosas, S. New evidence on the role of siliceous sponges in ecology and sedimentary facies development in Eastern Panthalassa following the Triassic-Jurassic mass extinction. Palaios 29, 652–668 (2014)

    Article  ADS  Google Scholar 

  84. Pietsch, C. & Bottjer, D. J. The importance of oxygen for the disparate recovery patterns of the benthic macrofauna in the Early Triassic. Earth Sci. Rev. 137, 65–84 (2014)

    CAS  Article  Google Scholar 

  85. Peters, S. E. & Heim, N. A. in Comparing the Geological and Fossil Records: Implications for Biodiversity Studies (eds McGowan, A. J. & Smith, A. B. ) 95–104 (Geological Society, 2011)

  86. Smith, A. B., Lloyd, G. T. & McGowan, A. J. Phanerozoic marine diversity: rock record modelling provides an independent test of large-scale trends. Proc. R. Soc. Lond. B 279, 4489–4495 (2012)

    Article  Google Scholar 

  87. D’Hondt, S. Consequences of the Cretaceous/Paleogene mass extinction for marine ecosystems. Annu. Rev. Ecol. Evol. Syst. 36, 295–317 (2005)

    Article  Google Scholar 

  88. Hull, P. M. & Norris, R. D. Diverse patterns of ocean export productivity change across the Cretaceous-Paleogene boundary: New insights from biogenic barium. Paleoceanography 26, 1–10 (2011)

    Article  Google Scholar 

  89. Ward, P. D. et al. Sudden productivity collapse associated with the Triassic-Jurassic boundary mass extinction. Science 292, 1148–1151 (2001)

    CAS  Article  ADS  PubMed  Google Scholar 

  90. Alegret, L., Thomas, E. & Lohmann, K. C. End-Cretaceous marine mass extinction not caused by productivity collapse. Proc. Natl Acad. Sci. USA 109, 728–732 (2012)

    CAS  Article  ADS  PubMed  Google Scholar 

  91. Meyer, K. M., Yu, M., Jost, A. B., Kelley, B. M. & Payne, J. L. δ13C evidence that high primary productivity delayed recovery from end-Permian mass extinction. Earth Planet. Sci. Lett. 302, 378–384 (2011)

    CAS  Article  ADS  Google Scholar 

  92. Dayton, P. K., Tegner, M. J., Edwards, P. B. & Riser, K. L. Sliding baselines, ghosts, and reduced expectations in kelp forest communities. Ecol. Appl. 8, 309–322 (1998)

    Article  Google Scholar 

  93. Jackson, J. B. C. Ecological extinction and evolution in the brave new ocean. Proc. Natl Acad. Sci. USA 105 (Suppl. 1), 11458–11465 (2008). A compelling case for ecological rarity in resetting ecosystems in the brave new oceans of the Anthropocene

    CAS  Article  ADS  PubMed  PubMed Central  Google Scholar 

  94. Greenstein, B. J., Curran, H. A. & Pandolfi, J. M. Shifting ecological baselines and the demise of Acropora cervicornis in the western North Atlantic and Caribbean Province: a Pleistocene perspective. Coral Reefs 17, 249–261 (1998)

    Article  Google Scholar 

  95. Pandolfi, J. M. & Jackson, J. B. C. Ecological persistence interrupted in Caribbean coral reefs. Ecol. Lett. 9, 818–826 (2006). An elegant examination of resilience and collapse in coral reef communities, and an example of the potential of the fossil record to inform questions of conservation biology

    Article  PubMed  Google Scholar 

  96. Hanski, I. & Ovaskainen, O. Extinction debt at extinction threshold. Conserv. Biol. 16, 666–673 (2002)

    Article  Google Scholar 

  97. Smith, J. T. & Jackson, J. B. C. Ecology of extreme faunal turnover of tropical American scallops. Paleobiology 35, 77–93 (2009)

    Article  Google Scholar 

  98. Lewis, S. L. & Maslin, M. A. Defining the Anthropocene. Nature 519, 171–180 (2015)

    CAS  Article  ADS  PubMed  Google Scholar 

  99. Crutzen, P. J. & Stoermer, E. F. The “Anthropocene”. Global Change Newsletter IGBP 41, 17–18 (2000)

    Google Scholar 

  100. Zalasiewicz, J., Williams, M., Haywood, A. & Ellis, M. The Anthropocene: a new epoch of geological time? Philosophical Transactions of the Royal Society A-Mathematical Physical and Engineering Sciences 369, 835–841 (2011)

    Article  ADS  Google Scholar 

  101. Steffen, W., Grinevald, J., Crutzen, P. & McNeill, J. The Anthropocene: conceptual and historical perspectives. Philos. Trans. A 369, 842–867 (2011)

    Article  ADS  Google Scholar 

  102. Schipper, J. et al. The status of the world’s land and marine mammals: diversity, threat, and knowledge. Science 322, 225–230 (2008)

    CAS  Article  ADS  PubMed  Google Scholar 

  103. McKinney, M. L. High rates of extinction and threat in poorly studied taxa. Conserv. Biol. 13, 1273–1281 (1999)

    Article  Google Scholar 

  104. Régnier, C., Fontaine, B. & Bouchet, P. Not knowing, not recording, not listing: numerous unnoticed mollusk extinctions. Conserv. Biol. 23, 1214–1221 (2009)

    Article  PubMed  Google Scholar 

  105. Erwin, D. A call to the custodians of deep time. Nature 462, 282–283 (2009)

    CAS  Article  ADS  PubMed  Google Scholar 

  106. Peters, S. E. The Paleobiology Database Release PBDB Navigator. Priscum 21, 1–2 (2014)

    Google Scholar 

  107. Finnegan, S. et al. Extinctions. Paleontological baselines for evaluating extinction risk in the modern oceans. Science 348, 567–570 (2015)

    CAS  Article  ADS  PubMed  Google Scholar 

  108. Harnik, P. G., Simpson, C. & Payne, J. L. Long-term differences in extinction risk among the seven forms of rarity. Proc. R. Soc. Lond. B 279, 4969–4976 (2012)

    Article  Google Scholar 

  109. Benton, M. J. in The unity of evolutionary biology (ed. Dudley, E. C. ) 89–102 (Dioscorides Press, 1991)

  110. Barnosky, A. D. et al. Approaching a state shift in Earth’s biosphere. Nature 486, 52–58 (2012)

    CAS  Article  ADS  PubMed  Google Scholar 

  111. Lotze, H. K. & Worm, B. Historical baselines for large marine animals. Trends Ecol. Evol. 24, 254–262 (2009)

    Article  PubMed  Google Scholar 

  112. Flessa, K. W. & Jablonski, D. Extinction is here to stay. Paleobiology 9, 315–321 (1983)

    Article  Google Scholar 

  113. Burgess, S. D., Bowring, S. & Shen, S. Z. High-precision timeline for Earth’s most severe extinction. Proc. Natl Acad. Sci. USA 111, 3316–3321 (2014)

    CAS  Article  ADS  PubMed  PubMed Central  Google Scholar 

  114. Shen, S. Z. et al. Calibrating the end-Permian mass extinction. Science 334, 1367–1372 (2011)

    CAS  Article  ADS  PubMed  Google Scholar 

  115. Schoene, B., Guex, J., Bartolini, A., Schaltegger, U. & Blackburn, T. J. Correlating the end-Triassic mass extinction and flood basalt volcanism at the 100 ka level. Geology 38, 387–390 (2010)

    CAS  Article  ADS  Google Scholar 

Download references

Acknowledgements

This manuscript arose out of discussion sparked by Arizona State University’s Origins Project workshop hosted by L. Krauss and M. Laubichler; interdisciplinary training in the first class of the National Science Foundation IGERT programme in the Center for Marine Biodiversity & Conservation (led by N. Knowlton, J. B. C. Jackson, E. Sala, R. Carson, M. Tillman; supported by P. Dockery) at the Scripps Institution of Oceanography; and long association with D. E. G. Briggs and group. This manuscript was greatly improved through discussions with J. B. C. Jackson, K. L. Cramer, M. S. Roth and the Yale Paleontology group. D.H.E. acknowledges support from the NASA Astrobiology Institute. S.A.F.D. acknowledges support from a Peter Buck Fellowship at NMNH.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the writing of this manuscript and the ideas contained therein.

Corresponding author

Correspondence to Pincelli M. Hull.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

PowerPoint slides

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Hull, P., Darroch, S. & Erwin, D. Rarity in mass extinctions and the future of ecosystems. Nature 528, 345–351 (2015). https://doi.org/10.1038/nature16160

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nature16160

Further reading

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing