Abstract
The fossil record provides striking case studies of biodiversity loss and global ecosystem upheaval. Because of this, many studies have sought to assess the magnitude of the current biodiversity crisis relative to past crises—a task greatly complicated by the need to extrapolate extinction rates. Here we challenge this approach by showing that the rarity of previously abundant taxa may be more important than extinction in the cascade of events leading to global changes in the biosphere. Mass rarity may provide the most robust measure of our current biodiversity crisis relative to those past, and new insights into the dynamics of mass extinction.
This is a preview of subscription content, access via your institution
Relevant articles
Open Access articles citing this article.
-
Urban wild bees benefit from flower-rich anthropogenic land use depending on bee trait and scale
Landscape Ecology Open Access 03 September 2023
-
Shrub and vegetation cover predict resource selection use by an endangered species of desert lizard
Scientific Reports Open Access 17 March 2020
-
Reconciling cooperation, biodiversity and stability in complex ecological communities
Scientific Reports Open Access 03 April 2019
Access options
Subscribe to this journal
Receive 51 print issues and online access
$199.00 per year
only $3.90 per issue
Rent or buy this article
Prices vary by article type
from$1.95
to$39.95
Prices may be subject to local taxes which are calculated during checkout



References
Barnosky, A. D. et al. Has the Earth’s sixth mass extinction already arrived? Nature 471, 51–57 (2011). A powerful marshalling of the paleontological evidence for a 6th mass extinction, in a paper that sparked much subsequent discussion and research
Kolbert, E. The Sixth Extinction: an Unnatural History 1–319 (Holt, 2014)
Alvarez, L. W., Alvarez, W., Asaro, F. & Michel, H. V. Extraterrestrial cause for the cretaceous-tertiary extinction. Science 208, 1095–1108 (1980)
Erwin, D. H. Extinction: How Life on Earth Nearly Ended 250 Million Years Ago (Princeton Univ. Press, 2006)
Wagner, P. J., Kosnik, M. A. & Lidgard, S. Abundance distributions imply elevated complexity of post-Paleozoic marine ecosystems. Science 314, 1289–1292 (2006). A key example of the profound potential of mass extinctions to permanently shift the structure of ecosystems
Sahney, S., Benton, M. J. & Ferry, P. A. Links between global taxonomic diversity, ecological diversity and the expansion of vertebrates on land. Biol. Lett. 6, 544–547 (2010)
Jablonski, D. Mass extinctions and macroevolution. Paleobiology 31, 192–210 (2005)
Brusatte, S. L., Benton, M. J., Ruta, M. & Lloyd, G. T. Superiority, competition, and opportunism in the evolutionary radiation of dinosaurs. Science 321, 1485–1488 (2008)
Alroy, J. Dynamics of origination and extinction in the marine fossil record. Proc. Natl Acad. Sci. USA 105 (Suppl. 1), 11536–11542 (2008)
Raup, D. M. & Sepkoski, J. J. Jr. Mass extinctions in the marine fossil record. Science 215, 1501–1503 (1982)
Harnik, P. G. et al. Extinctions in ancient and modern seas. Trends Ecol. Evol. 27, 608–617 (2012)
Hull, P. M. & Darroch, S. A. F. in Ecosystems Paleobiology and Geobiology. The Paleontological Society Papers Vol. 19 (eds A. M. Bush, S. B. Pruss, & J. L. Payne ) 115–156 (Geological Soc. America, 2013)
Erwin, D. H. Lessons from the past: biotic recoveries from mass extinctions. Proc. Natl Acad. Sci. USA 98, 5399–5403 (2001)
Bambach, R. K. Phanerozoic biodiversity mass extinctions. Annu. Rev. Earth Planet. Sci. 34, 127–155 (2006)
Sepkoski, J. J. in Patterns and Processes in the History of Life (eds D. M. Raup & D. Jablonski ) 277–295 (Springer-Verlag, 1986)
Erwin, D. H. The end and the bueginning: recoveries from mass extinctions. Trends Ecol. Evol. 13, 344–349 (1998)
Schmitz, O. J. et al. From individuals to ecosystem function: toward an integration of evolutionary and ecosystem ecology. Ecology 89, 2436–2445 (2008)
Erwin, D. H. Temporal acuity and the rate and dynamics of mass extinctions. Proc. Natl Acad. Sci. USA 111, 3203–3204 (2014)
Hull, P. M., Norris, R. D., Bralower, T. J. & Schueth, J. D. A role for chance in marine recovery from the end-Cretaceous extinction. Nat. Geosci. (2011)
Chen, Z.-Q. & Benton, M. J. The timing and pattern of biotic recovery following the end-Permian mass extinction. Nat. Geosci. 5, 375–383 (2012)
Twitchett, R. J. The Lilliput effect in the aftermath of the end-Permian extinction event. Palaeogeogr. Palaeoclimatol. Palaeoecol. 252, 132–144 (2007)
Payne, J. L. Evolutionary dynamics of gastropod size across the end-Permian extinction and through the Triassic recovery interval. Paleobiology 31, 269–290 (2005)
Droser, M. L., Bottjer, D. J., Sheehan, P. M. & McGhee, G. R. Decoupling of taxonomic and ecologic severity of Phanerozoic marine mass extinctions. Geology 28, 675–678 (2000)
Wood, R. Reef Evolution (Oxford Univ. Press, 1999)
Sepkoski, J. J. A factor analytic description of the Phanerozoic marine fossil record. Paleobiology 7, 36–53 (1981)
Solé, R. V., Saldaña, J., Montoya, J. M. & Erwin, D. H. Simple model of recovery dynamics after mass extinction. J. Theor. Biol. 267, 193–200 (2010)
Bambach, R. K., Knoll, A. H. & Sepkoski, J. J. Jr. Anatomical and ecological constraints on Phanerozoic animal diversity in the marine realm. Proc. Natl Acad. Sci. USA 99, 6854–6859 (2002)
Sepkoski, J. J. Jr. Biodiversity: past, present, and future. J Paleo 71, 533–539 (1997)
Ceballos, G. et al. Accelerated modern human-induced species losses: entering the sixth mass extinction. Science Advances 1, e1400253 (2015)
Naeem, S., Duffy, J. E. & Zavaleta, E. The functions of biological diversity in an age of extinction. Science 336, 1401–1406 (2012). A review of the multifarious impacts that a change in ecosystem structure can have on ecosystem function
Tittensor, D. P. et al. A mid-term analysis of progress toward international biodiversity targets. Science 346, 241–244 (2014)
Halpern, B. S. et al. A global map of human impact on marine ecosystems. Science 319, 948–952 (2008)
McGill, B. J., Dornelas, M., Gotelli, N. J. & Magurran, A. E. Fifteen forms of biodiversity trend in the Anthropocene. Trends Ecol. Evol. 30, 104–113 (2015)
Newbold, T. et al. Global effects of land use on local terrestrial biodiversity. Nature 520, 45–50 (2015)
MacNeil, M. A. et al. Recovery potential of the world’s coral reef fishes. Nature 520, 341–344 (2015)
Pandolfi, J. M. et al. Global trajectories of the long-term decline of coral reef ecosystems. Science 301, 955–958 (2003)
Worm, B. & Tittensor, D. P. Range contraction in large pelagic predators. Proc. Natl Acad. Sci. USA 108, 11942–11947 (2011)
McCauley, D. J. et al. Marine defaunation: animal loss in the global ocean. Science 347, 1255641 (2015). The proximate trigger for one of us (P.M.H.) to begin pondering the importance of rarity during events of geological proportion
Ceballos, G. & Ehrlich, P. R. Mammal population losses and the extinction crisis. Science 296, 904–907 (2002)
Dornelas, M. et al. Assemblage time series reveal biodiversity change but not systematic loss. Science 344, 296–299 (2014)
Hughes, J. B., Daily, G. C. & Ehrlich, P. R. Population diversity: its extent and extinction. Science 278, 689–692 (1997)
Baum, J. K. et al. Collapse and conservation of shark populations in the Northwest Atlantic. Science 299, 389–392 (2003)
Myers, R. A. & Worm, B. Rapid worldwide depletion of predatory fish communities. Nature 423, 280–283 (2003)
Dulvy, N. K., Sadovy, Y. & Reynolds, J. D. Extinction vulnerability in marine populations. Fish Fish. 4, 25–64 (2003)
Worm, B. et al. Impacts of biodiversity loss on ocean ecosystem services. Science 314, 787–790 (2006)
Edgar, G. J. et al. Global conservation outcomes depend on marine protected areas with five key features. Nature 506, 216–220 (2014)
Lotze, H. K., Coll, M., Magera, A. M., Ward-Paige, C. & Airoldi, L. Recovery of marine animal populations and ecosystems. Trends Ecol. Evol. 26, 595–605 (2011)
Rabinowitz, D. in The biological aspects of rare plant conservation (ed. H. Synge ) 205–217 (Wiley, 1981)
Sperling, E. A. in Ecosystems Paleobiology and Geobiology. The Paleontological Society Papers Vol. 19 (eds A. M. Bush, S. B. Pruss, & J. L. Payne ) 77–86 (Geological Soc. America, 2013)
Schopf, T. J. M. Fossilization potential of an intertidal fauna: Friday Harbor, Washington. Paleobiology 4, 261–270 (1978)
Briggs, D. E. G. The role of decay and mineralization in the preservation of soft-bodied fossils. Annu. Rev. Earth Planet. Sci. 31, 275–301 (2003)
Benton, M. J. Biodiversity on land and in the sea. Geol. J. 36, 211–230 (2001)
Benton, M. J. Diversification and extinction in the history of life. Science 268, 52–58 (1995)
Nee, S. & May, R. M. Dynamics of metapopulations: habitat destruction and competitive coexistence. J. Anim. Ecol. 61, 37–40 (1992)
Tilman, D. et al. Habitat destruction and the extinction debt. Nature 371, 65–66 (1994). The paper that defined extinction debt and made a strong case for the importance of events that occur long before the last individual dies in ecosystem change and extinction
Twitchett, R. J. Incompleteness of the Permian-Triassic fossil record: a consequence of productivity decline? Geol. J. 36, 341–353 (2001)
Twitchett, R. J., Wignall, P. B. & Benton, M. J. Discussion on Lazarus taxa and fossil abundance at times of biotic crisis. J. Geol. Soc. Lond. 157, 511–512 (2000)
Marshall, C. R. in Quantitative Methods in Paleobiology (eds Alroy, J. & Hunt, G. ) 291–316 (The Paleontological Society, 2010)
Gardmark, A. et al. Regime shifts in exploited marine food webs: detecting mechanisms underlying alternative stable states using size-structured community dynamics theory. Phil. Trans. R. Soc. Lond. B 370, 20130262 (2014)
deYoung, B. et al. Regime shifts in marine ecosystems: detection, prediction and management. Trends Ecol. Evol. 23, 402–409 (2008)
Jackson, J. B. C. What was natural in the coastal oceans? Proc. Natl Acad. Sci. USA 98, 5411–5418 (2001)
Rothschild, B. J., Ault, J. S., Goulletquer, P. & Heral, M. Decline of the Chesapeake Bay oyster population: a century of habitat destruction and overfishing. Mar. Ecol. Prog. Ser. 111, 29–39 (1994)
Frank, K. T., Petrie, B., Choi, J. S. & Leggett, W. C. Trophic cascades in a formerly cod-dominated ecosystem. Science 308, 1621–1623 (2005)
Jackson, J. B. C., Donovan, M. K., Cramer, K. L. & Lam, W. Status and Trends of Carribean Coral Reefs: 1970–2012. (Global Coral Reef Monitoring Network, IUCN, 2014)
Levin, P. S. & Möllmann, C. Marine ecosystem regime shifts: challenges and opportunities for ecosystem-based management. Phil. Trans. R. Soc. Lond. B 370, 20130275 (2014)
Wood, R. The changing biology of reef-building. Palaios 10, 517–529 (1995)
Kiessling, W. & Simpson, C. On the potential for ocean acidification to be a general cause of ancient reef crises. Glob. Change Biol. 17, 56–67 (2011)
Crane, P. R., Friis, E. M. & Pedersen, K. R. The origin and early diversification of angiosperms. Nature 374, 27–33 (1995)
Edwards, E. J. et al.; C4 Grasses Consortium. The origins of C4 grasslands: integrating evolutionary and ecosystem science. Science 328, 587–591 (2010)
Harries, P. J., Kauffman, E. G. & Hansen, T. A. in Biotic Recovery from Mass Extinction Events. Geological Society of London Special Publication 102 (ed. M. B. Hart ) 41–60 (1996)
Kauffman, E. G. & Erwin, D. H. Surviving mass extinctions. Geotimes 40, 14–17 (1995)
Jablonski, D. in Dynamics of Extinction (ed. Elliott, D. K. ) 183–229 (Wiley, 1986)
Erwin, D. in Evolutionary paleobiology (eds Jablonski, D., Erwin, D. H. & Lipps, J. H. ) 398–418 (Univ. Chicago Press, 1996)
Rong, J. Y., Boucot, A. J., Harper, D. A. T., Zhan, R. B. & Neuman, R. B. Global analyses of brachiopod faunas through the Ordovician and Silurian transition: reducing the role of the Lazarus effect. Can. J. Earth Sci. 43, 23–39 (2006)
Surlyk, F. & Johansen, M. B. End-cretaceous brachiopod extinctions in the chalk of denmark. Science 223, 1174–1177 (1984)
Casier, J. G. & Lethiers, F. Ostracods surviving the F/F event in the Devils Gate Pass Section (Nevada, USA). Geobios 30, 811–821 (1997)
Smith, J. L. B. A living fish of Mesozoic type. Nature 143, 455–456 (1939)
Hagino, K. et al. Re-discovery of a “living fossil” coccolithophore from the coastal waters of Japan and Croatia. Mar. Micropaleontol. 116, 28–37 (2015)
Jablonski, D. Survival without recovery after mass extinctions. Proc. Natl Acad. Sci. USA 99, 8139–8144 (2002). The first detailed documentation of the importance of delayed extinctions across mass extinction boundaries
Jablonski, D. Lessons from the past: evolutionary impacts of mass extinctions. Proc. Natl Acad. Sci. USA 98, 5393–5398 (2001)
Kaim, A. & Nutzel, A. Dead bellerophontids walking - The short Mesozoic history of the Bellerophontoidea (Gastropoda). Palaeogeogr. Palaeoclimatol. Palaeoecol. 308, 190–199 (2011)
Schubert, J. K. & Bottjer, D. J. Early Triassic stromatolites as post mass extinction disaster forms. Geology 20, 883–886 (1992)
Ritterbush, K. A., Bottjer, D. J., Corsetti, F. A. & Rosas, S. New evidence on the role of siliceous sponges in ecology and sedimentary facies development in Eastern Panthalassa following the Triassic-Jurassic mass extinction. Palaios 29, 652–668 (2014)
Pietsch, C. & Bottjer, D. J. The importance of oxygen for the disparate recovery patterns of the benthic macrofauna in the Early Triassic. Earth Sci. Rev. 137, 65–84 (2014)
Peters, S. E. & Heim, N. A. in Comparing the Geological and Fossil Records: Implications for Biodiversity Studies (eds McGowan, A. J. & Smith, A. B. ) 95–104 (Geological Society, 2011)
Smith, A. B., Lloyd, G. T. & McGowan, A. J. Phanerozoic marine diversity: rock record modelling provides an independent test of large-scale trends. Proc. R. Soc. Lond. B 279, 4489–4495 (2012)
D’Hondt, S. Consequences of the Cretaceous/Paleogene mass extinction for marine ecosystems. Annu. Rev. Ecol. Evol. Syst. 36, 295–317 (2005)
Hull, P. M. & Norris, R. D. Diverse patterns of ocean export productivity change across the Cretaceous-Paleogene boundary: New insights from biogenic barium. Paleoceanography 26, 1–10 (2011)
Ward, P. D. et al. Sudden productivity collapse associated with the Triassic-Jurassic boundary mass extinction. Science 292, 1148–1151 (2001)
Alegret, L., Thomas, E. & Lohmann, K. C. End-Cretaceous marine mass extinction not caused by productivity collapse. Proc. Natl Acad. Sci. USA 109, 728–732 (2012)
Meyer, K. M., Yu, M., Jost, A. B., Kelley, B. M. & Payne, J. L. δ13C evidence that high primary productivity delayed recovery from end-Permian mass extinction. Earth Planet. Sci. Lett. 302, 378–384 (2011)
Dayton, P. K., Tegner, M. J., Edwards, P. B. & Riser, K. L. Sliding baselines, ghosts, and reduced expectations in kelp forest communities. Ecol. Appl. 8, 309–322 (1998)
Jackson, J. B. C. Ecological extinction and evolution in the brave new ocean. Proc. Natl Acad. Sci. USA 105 (Suppl. 1), 11458–11465 (2008). A compelling case for ecological rarity in resetting ecosystems in the brave new oceans of the Anthropocene
Greenstein, B. J., Curran, H. A. & Pandolfi, J. M. Shifting ecological baselines and the demise of Acropora cervicornis in the western North Atlantic and Caribbean Province: a Pleistocene perspective. Coral Reefs 17, 249–261 (1998)
Pandolfi, J. M. & Jackson, J. B. C. Ecological persistence interrupted in Caribbean coral reefs. Ecol. Lett. 9, 818–826 (2006). An elegant examination of resilience and collapse in coral reef communities, and an example of the potential of the fossil record to inform questions of conservation biology
Hanski, I. & Ovaskainen, O. Extinction debt at extinction threshold. Conserv. Biol. 16, 666–673 (2002)
Smith, J. T. & Jackson, J. B. C. Ecology of extreme faunal turnover of tropical American scallops. Paleobiology 35, 77–93 (2009)
Lewis, S. L. & Maslin, M. A. Defining the Anthropocene. Nature 519, 171–180 (2015)
Crutzen, P. J. & Stoermer, E. F. The “Anthropocene”. Global Change Newsletter IGBP 41, 17–18 (2000)
Zalasiewicz, J., Williams, M., Haywood, A. & Ellis, M. The Anthropocene: a new epoch of geological time? Philosophical Transactions of the Royal Society A-Mathematical Physical and Engineering Sciences 369, 835–841 (2011)
Steffen, W., Grinevald, J., Crutzen, P. & McNeill, J. The Anthropocene: conceptual and historical perspectives. Philos. Trans. A 369, 842–867 (2011)
Schipper, J. et al. The status of the world’s land and marine mammals: diversity, threat, and knowledge. Science 322, 225–230 (2008)
McKinney, M. L. High rates of extinction and threat in poorly studied taxa. Conserv. Biol. 13, 1273–1281 (1999)
Régnier, C., Fontaine, B. & Bouchet, P. Not knowing, not recording, not listing: numerous unnoticed mollusk extinctions. Conserv. Biol. 23, 1214–1221 (2009)
Erwin, D. A call to the custodians of deep time. Nature 462, 282–283 (2009)
Peters, S. E. The Paleobiology Database Release PBDB Navigator. Priscum 21, 1–2 (2014)
Finnegan, S. et al. Extinctions. Paleontological baselines for evaluating extinction risk in the modern oceans. Science 348, 567–570 (2015)
Harnik, P. G., Simpson, C. & Payne, J. L. Long-term differences in extinction risk among the seven forms of rarity. Proc. R. Soc. Lond. B 279, 4969–4976 (2012)
Benton, M. J. in The unity of evolutionary biology (ed. Dudley, E. C. ) 89–102 (Dioscorides Press, 1991)
Barnosky, A. D. et al. Approaching a state shift in Earth’s biosphere. Nature 486, 52–58 (2012)
Lotze, H. K. & Worm, B. Historical baselines for large marine animals. Trends Ecol. Evol. 24, 254–262 (2009)
Flessa, K. W. & Jablonski, D. Extinction is here to stay. Paleobiology 9, 315–321 (1983)
Burgess, S. D., Bowring, S. & Shen, S. Z. High-precision timeline for Earth’s most severe extinction. Proc. Natl Acad. Sci. USA 111, 3316–3321 (2014)
Shen, S. Z. et al. Calibrating the end-Permian mass extinction. Science 334, 1367–1372 (2011)
Schoene, B., Guex, J., Bartolini, A., Schaltegger, U. & Blackburn, T. J. Correlating the end-Triassic mass extinction and flood basalt volcanism at the 100 ka level. Geology 38, 387–390 (2010)
Acknowledgements
This manuscript arose out of discussion sparked by Arizona State University’s Origins Project workshop hosted by L. Krauss and M. Laubichler; interdisciplinary training in the first class of the National Science Foundation IGERT programme in the Center for Marine Biodiversity & Conservation (led by N. Knowlton, J. B. C. Jackson, E. Sala, R. Carson, M. Tillman; supported by P. Dockery) at the Scripps Institution of Oceanography; and long association with D. E. G. Briggs and group. This manuscript was greatly improved through discussions with J. B. C. Jackson, K. L. Cramer, M. S. Roth and the Yale Paleontology group. D.H.E. acknowledges support from the NASA Astrobiology Institute. S.A.F.D. acknowledges support from a Peter Buck Fellowship at NMNH.
Author information
Authors and Affiliations
Contributions
All authors contributed to the writing of this manuscript and the ideas contained therein.
Corresponding author
Ethics declarations
Competing interests
The authors declare no competing financial interests.
Rights and permissions
About this article
Cite this article
Hull, P., Darroch, S. & Erwin, D. Rarity in mass extinctions and the future of ecosystems. Nature 528, 345–351 (2015). https://doi.org/10.1038/nature16160
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1038/nature16160
This article is cited by
-
Urban wild bees benefit from flower-rich anthropogenic land use depending on bee trait and scale
Landscape Ecology (2023)
-
Spatial variation in the dynamics and synchrony of coral reef communities in the US Virgin Islands
Marine Biology (2022)
-
The population sizes and global extinction risk of reef-building coral species at biogeographic scales
Nature Ecology & Evolution (2021)
-
Impacts of speciation and extinction measured by an evolutionary decay clock
Nature (2020)
-
Shrub and vegetation cover predict resource selection use by an endangered species of desert lizard
Scientific Reports (2020)
Comments
By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.