Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Entangling two transportable neutral atoms via local spin exchange

Abstract

To advance quantum information science, physical systems are sought that meet the stringent requirements for creating and preserving quantum entanglement. In atomic physics, robust two-qubit entanglement is typically achieved by strong, long-range interactions in the form of either Coulomb interactions between ions or dipolar interactions between Rydberg atoms1,2,3,4. Although such interactions allow fast quantum gates, the interacting atoms must overcome the associated coupling to the environment and cross-talk among qubits5,6,7,8. Local interactions, such as those requiring substantial wavefunction overlap, can alleviate these detrimental effects; however, such interactions present a new challenge: to distribute entanglement, qubits must be transported, merged for interaction, and then isolated for storage and subsequent operations. Here we show how, using a mobile optical tweezer, it is possible to prepare and locally entangle two ultracold neutral atoms, and then separate them while preserving their entanglement9,10,11. Ground-state neutral atom experiments have measured dynamics consistent with spin entanglement10,12,13, and have detected entanglement with macroscopic observables14,15; we are now able to demonstrate position-resolved two-particle coherence via application of a local gradient and parity measurements1. This new entanglement-verification protocol could be applied to arbitrary spin-entangled states of spatially separated atoms16,17. The local entangling operation is achieved via spin-exchange interactions9,10,11, and quantum tunnelling is used to combine and separate atoms. These techniques provide a framework for dynamically entangling remote qubits via local operations within a large-scale quantum register.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Figure 1: Experimental overview.
Figure 2: Direct observation of spin-exchange dynamics between two atoms.
Figure 3: Detection of non-local entanglement.

References

  1. 1

    Sackett, C. A. et al. Experimental entanglement of four particles. Nature 404, 256–259 (2000)

    ADS  CAS  Article  Google Scholar 

  2. 2

    Leibfried, D. et al. Experimental demonstration of a robust, high-fidelity geometric two ion-qubit phase gate. Nature 422, 412–415 (2003)

    ADS  CAS  Article  Google Scholar 

  3. 3

    Wilk, T. et al. Entanglement of two individual neutral atoms using Rydberg blockade. Phys. Rev. Lett. 104, 010502 (2010)

    ADS  CAS  Article  Google Scholar 

  4. 4

    Isenhower, L. et al. Demonstration of a neutral atom controlled-NOT quantum gate. Phys. Rev. Lett. 104, 010503 (2010)

    ADS  CAS  Article  Google Scholar 

  5. 5

    Monroe, C. et al. Resolved-sideband Raman cooling of a bound atom to the 3D zero-point energy. Phys. Rev. Lett. 75, 4011–4014 (1995)

    ADS  MathSciNet  CAS  Article  Google Scholar 

  6. 6

    Blakestad, R. et al. High-fidelity transport of trapped-ion qubits through an X-junction trap array. Phys. Rev. Lett. 102, 153002 (2009)

    ADS  CAS  Article  Google Scholar 

  7. 7

    Home, J. P. et al. Complete methods set for scalable ion trap quantum information processing. Science 325, 1227–1230 (2009)

    ADS  MathSciNet  CAS  Article  Google Scholar 

  8. 8

    Béguin, L., Vernier, A., Chicireanu, R., Lahaye, T. & Browaeys, A. Direct measurement of the van der Waals interaction between two Rydberg atoms. Phys. Rev. Lett. 110, 263201 (2013)

    ADS  Article  Google Scholar 

  9. 9

    Hayes, D., Julienne, P. & Deutsch, I. Quantum logic via the exchange blockade in ultracold collisions. Phys. Rev. Lett. 98, 070501 (2007)

    ADS  Article  Google Scholar 

  10. 10

    Anderlini, M. et al. Controlled exchange interaction between pairs of neutral atoms in an optical lattice. Nature 448, 452–456 (2007)

    ADS  CAS  Article  Google Scholar 

  11. 11

    Weitenberg, C., Kuhr, S., Mølmer, K. & Sherson, J. Quantum computation architecture using optical tweezers. Phys. Rev. A 84, 032322 (2011)

    ADS  Article  Google Scholar 

  12. 12

    Mandel, O. et al. Controlled collisions for multi-particle entanglement of optically trapped atoms. Nature 425, 937–940 (2003)

    ADS  CAS  Article  Google Scholar 

  13. 13

    Fukuhara, T. et al. Quantum dynamics of a mobile spin impurity. Nature Phys. 9, 235–241 (2013)

    ADS  CAS  Article  Google Scholar 

  14. 14

    Lücke, B. et al. Twin matter waves for interferometry beyond the classical limit. Science 334, 773–776 (2011)

    ADS  Article  Google Scholar 

  15. 15

    Strobel, H. et al. Fisher information and entanglement of non-Gaussian spin states. Science 345, 424–427 (2014)

    ADS  CAS  Article  Google Scholar 

  16. 16

    Mazza, L., Rossini, D., Fazio, R. & Endres, M. Detecting two-site spin-entanglement in many-body systems with local particle-number fluctuations. New J. Phys. 17, 013015 (2015)

    ADS  CAS  Article  Google Scholar 

  17. 17

    Fukuhara, T. et al. Spatially resolved detection of a spin-entanglement wave in a Bose-Hubbard chain. Phys. Rev. Lett. 115, 035302 (2015)

    ADS  Article  Google Scholar 

  18. 18

    DiVincenzo, D. P., Bacon, D., Kempe, J., Burkard, G. & Whaley, K. B. Universal quantum computation with the exchange interaction. Nature 408, 339–342 (2000)

    ADS  CAS  Article  Google Scholar 

  19. 19

    Petta, J. R. et al. Coherent manipulation of coupled electron spins in semiconductor quantum dots. Science 309, 2180–2184 (2005)

    ADS  CAS  Article  Google Scholar 

  20. 20

    Trotzky, S. et al. Time-resolved observation and control of superexchange interactions with ultracold atoms in optical lattices. Science 319, 295–299 (2008)

    ADS  CAS  Article  Google Scholar 

  21. 21

    Kotler, S., Akerman, N., Navon, N., Glickman, Y. & Ozeri, R. Measurement of the magnetic interaction between two bound electrons of two separate ions. Nature 510, 376–380 (2014)

    ADS  CAS  Article  Google Scholar 

  22. 22

    Daley, A. J., Pichler, H., Schachenmayer, J. & Zoller, P. Measuring entanglement growth in quench dynamics of bosons in an optical lattice. Phys. Rev. Lett. 109, 020505 (2012)

    ADS  CAS  Article  Google Scholar 

  23. 23

    Greif, D., Uehlinger, T., Jotzu, G., Tarruell, L. & Esslinger, T. Short-range quantum magnetism of ultracold fermions in an optical lattice. Science 340, 1307–1310 (2013)

    ADS  CAS  Article  Google Scholar 

  24. 24

    Murmann, S. et al. Two fermions in a double well: exploring a fundamental building block of the Hubbard model. Phys. Rev. Lett. 114, 080402 (2015)

    ADS  Article  Google Scholar 

  25. 25

    Hart, R. A. et al. Observation of antiferromagnetic correlations in the Hubbard model with ultracold atoms. Nature 519, 211–214 (2015)

    ADS  CAS  Article  Google Scholar 

  26. 26

    Schlosser, N., Reymond, G., Protsenko, I. & Grangier, P. Sub-poissonian loading of single atoms in a microscopic dipole trap. Nature 411, 1024–1027 (2001)

    ADS  CAS  Article  Google Scholar 

  27. 27

    Kaufman, A. M., Lester, B. J. & Regal, C. A. Cooling a single atom in an optical tweezer to its quantum ground state. Phys. Rev. X 2, 041014 (2012)

    Google Scholar 

  28. 28

    Kaufman, A. M. et al. Two-particle quantum interference in tunnel-coupled optical tweezers. Science 345, 306–309 (2014)

    ADS  MathSciNet  CAS  Article  Google Scholar 

  29. 29

    Kielpinski, D. et al. A decoherence-free quantum memory using trapped ions. Science 291, 1013–1015 (2001)

    ADS  CAS  Article  Google Scholar 

  30. 30

    Wall, M. L., Hazzard, K. R. A. & Rey, A. M. Effective many-body parameters for atoms in nonseparable Gaussian optical potentials. Phys. Rev. A 92, 013610 (2015)

    ADS  Article  Google Scholar 

  31. 31

    Weitenberg, C. et al. Single-spin addressing in an atomic Mott insulator. Nature 471, 319–324 (2011)

    ADS  CAS  Article  Google Scholar 

  32. 32

    Stewart, G. R. Heavy-fermion systems. Rev. Mod. Phys. 56, 755–787 (1984)

    ADS  CAS  Article  Google Scholar 

  33. 33

    Peres, A. Separability criterion for density matrices. Phys. Rev. Lett. 77, 1413–1415 (1996)

    ADS  MathSciNet  CAS  Article  Google Scholar 

  34. 34

    Horodecki, M., Horodecki, P. & Horodecki, R. Separability of mixed states: necessary and sufficient conditions. Preprint at http://arXiv.org/abs/quant-ph/9605038 (1996)

Download references

Acknowledgements

This work was supported by the David and Lucile Packard Foundation and the National Science Foundation under grant number 1125844. C.A.R. acknowledges support from the Clare Boothe Luce Foundation. M.L.W. and A.M.R. acknowledge funding from NSF-PIF, ARO, ARO-DARPA-OLE and AFOSR. M.L.W. and M.F.-F. acknowledge support from the NRC postdoctoral fellowship program.

Author information

Affiliations

Authors

Contributions

A.M.K. and B.J.L. took the data and performed the data analysis, with guidance from C.A.R. M.F.F., M.L.W. and A.M.R. provided theoretical support. All authors contributed to the writing of the manuscript.

Corresponding author

Correspondence to C. A. Regal.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Extended data figures and tables

Extended Data Figure 1 Adiabatic energy eigenstates E as a function of the double-well bias Δ in units of the ground-excited tunnelling Jeg.

At large positive bias, the triplet and singlet eigenstates corresponding to two particles in the same well are split by Jex. The dashed and solid lines denote the energies of the states that asymptotically connect to the states labelled in the figure through the AP process. See Methods for details.

PowerPoint slides

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Kaufman, A., Lester, B., Foss-Feig, M. et al. Entangling two transportable neutral atoms via local spin exchange. Nature 527, 208–211 (2015). https://doi.org/10.1038/nature16073

Download citation

Further reading

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing