Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Ab initio alpha–alpha scattering

Abstract

Processes such as the scattering of alpha particles (4He), the triple-alpha reaction, and alpha capture play a major role in stellar nucleosynthesis. In particular, alpha capture on carbon determines the ratio of carbon to oxygen during helium burning, and affects subsequent carbon, neon, oxygen, and silicon burning stages. It also substantially affects models of thermonuclear type Ia supernovae, owing to carbon detonation in accreting carbon–oxygen white-dwarf stars1,2,3. In these reactions, the accurate calculation of the elastic scattering of alpha particles and alpha-like nuclei—nuclei with even and equal numbers of protons and neutrons—is important for understanding background and resonant scattering contributions. First-principles calculations of processes involving alpha particles and alpha-like nuclei have so far been impractical, owing to the exponential growth of the number of computational operations with the number of particles. Here we describe an ab initio calculation of alpha–alpha scattering that uses lattice Monte Carlo simulations. We use lattice effective field theory to describe the low-energy interactions of protons and neutrons, and apply a technique called the ‘adiabatic projection method’ to reduce the eight-body system to a two-cluster system. We take advantage of the computational efficiency and the more favourable scaling with system size of auxiliary-field Monte Carlo simulations to compute an ab initio effective Hamiltonian for the two clusters. We find promising agreement between lattice results and experimental phase shifts for s-wave and d-wave scattering. The approximately quadratic scaling of computational operations with particle number suggests that it should be possible to compute alpha scattering and capture on carbon and oxygen in the near future. The methods described here can be applied to ultracold atomic few-body systems as well as to hadronic systems using lattice quantum chromodynamics to describe the interactions of quarks and gluons.

Your institute does not have access to this article

Relevant articles

Open Access articles citing this article.

Access options

Buy article

Get time limited or full article access on ReadCube.

$32.00

All prices are NET prices.

Figure 1: Initial state clusters.
Figure 2: s-wave scattering radial wavefunctions.
Figure 3: s-wave phase shifts.
Figure 4: d-wave phase shifts.

References

  1. Imbriani, G. et al. The 12C(α, γ )16O reaction rate and the evolution of stars in the mass range 0.8 ≤ M/M ≤ 25. Astrophys. J. 558, 903–915 (2001)

    CAS  Article  ADS  Google Scholar 

  2. Rauscher, T., Heger, A., Hoffman, R. D. & Woosley, S. E. Nucleosynthesis in massive stars with improved nuclear and stellar physics. Astrophys. J. 576, 323–348 (2002)

    CAS  Article  ADS  Google Scholar 

  3. Wiescher, M., Käppeler, F. & Langanke, K. Critical reactions in contemporary nuclear astrophysics. Annu. Rev. Astron. Astrophys. 50, 165–210 (2012)

    CAS  Article  ADS  Google Scholar 

  4. Nollett, K. M., Pieper, S. C., Wiringa, R. B., Carlson, J. & Hale, G. M. Quantum Monte Carlo calculations of neutron-α scattering. Phys. Rev. Lett. 99, 022502 (2007)

    Article  ADS  CAS  PubMed  Google Scholar 

  5. Quaglioni, S. & Navrátil, P. Ab initio many-body calculations of n-3H, n-4He, p-3,4He, and n-10Be scattering. Phys. Rev. Lett. 101, 092501 (2008)

    Article  ADS  CAS  PubMed  Google Scholar 

  6. Navrátil, P. & Quaglioni, S. Ab initio many-body calculations of the 3H(d, n)4He and 3He(d, p)4He fusion. Phys. Rev. Lett. 108, 042503 (2012)

    Article  ADS  CAS  PubMed  Google Scholar 

  7. Hagen, G. & Michel, N. Elastic proton scattering of medium mass nuclei from coupled-cluster theory. Phys. Rev. C 86, 021602(R) (2012)

    Article  ADS  CAS  Google Scholar 

  8. Orlandini, G. et al. Coupling the Lorentz integral transform (LIT) and the coupled cluster (CC) methods: a way towards continuum spectra of “not-so-few-body” systems. Few-Body Syst. 55, 907–911 (2014)

    Article  ADS  Google Scholar 

  9. Woosley, S. E., Arnett, W. D. & Clayton, D. D. The explosive burning of oxygen and silicon. Astrophys. J. Suppl. Ser. 26, 231–312 (1973)

    CAS  Article  ADS  Google Scholar 

  10. Epelbaum, E., Krebs, H., Lee, D. & Meißner, U.-G. Ab initio calculation of the Hoyle state. Phys. Rev. Lett. 106, 192501 (2011)

    Article  ADS  CAS  PubMed  Google Scholar 

  11. Epelbaum, E., Krebs, H., Lähde, T., Lee, D. & Meißner, U.-G. Structure and rotations of the Hoyle state. Phys. Rev. Lett. 109, 252501 (2012)

    Article  ADS  CAS  PubMed  Google Scholar 

  12. Lähde, T. A. et al. Nuclear lattice simulations using symmetry-sign extrapolation. Eur. Phys. J. A 51, 92 (2015)

    Article  ADS  CAS  Google Scholar 

  13. Rupak, G. & Lee, D. Radiative capture reactions in lattice effective field theory. Phys. Rev. Lett. 111, 032502 (2013)

    Article  ADS  CAS  PubMed  Google Scholar 

  14. Pine, M., Lee, D. & Rupak, G. Adiabatic projection method for scattering and reactions on the lattice. Eur. Phys. J. A 49, 151 (2013)

    Article  ADS  CAS  Google Scholar 

  15. Elhatisari, S. & Lee, D. Fermion-dimer scattering using an impurity lattice Monte Carlo approach and the adiabatic projection method. Phys. Rev. C 90, 064001 (2014)

    Article  ADS  CAS  Google Scholar 

  16. Rupak, G. & Ravi, P. Proton–proton fusion in lattice effective field theory. Phys. Lett. B 741, 301–304 (2014)

    Article  ADS  CAS  MATH  Google Scholar 

  17. Rokash, A. et al. Scattering cluster wave functions on the lattice using the adiabatic projection method. Phys. Rev. C 92, 054612 (2015)

  18. Epelbaum, E., Hammer, H.-W. & Meißner, U.-G. Modern theory of nuclear forces. Rev. Mod. Phys. 81, 1773–1825 (2009)

    CAS  Article  ADS  Google Scholar 

  19. Heydenburg, N. P. & Temmer, G. M. Alpha-alpha scattering at low energies. Phys. Rev. 104, 123–134 (1956)

    CAS  Article  ADS  Google Scholar 

  20. Nilson, R., Jentschke, W. K., Briggs, G. R., Kerman, R. O. & Snyder, J. N. Investigation of excited states in Be8 by alpha-particle scattering from He. Phys. Rev. 109, 850–860 (1958)

    CAS  Article  ADS  Google Scholar 

  21. Tombrello, T. A. & Senhouse, L. S. Elastic scattering of alpha particles from helium. Phys. Rev. 129, 2252–2258 (1963)

    CAS  Article  ADS  Google Scholar 

  22. Afzal, S. A., Ahmad, A. A. Z. & Ali, S. Systematic survey of the αα interaction. Rev. Mod. Phys. 41, 247–273 (1969)

    CAS  Article  ADS  Google Scholar 

  23. Lu, B.-N., Lähde, T. A., Lee, D. & Meißner, U.-G. Precise determination of lattice phase shifts and mixing angles. Preprint at http://arxiv.org/abs/1506.05652 (2015)

  24. Lee, D. Lattice simulations for few- and many-body systems. Prog. Part. Nucl. Phys. 63, 117–154 (2009)

    CAS  Article  ADS  Google Scholar 

  25. Borasoy, B., Epelbaum, E., Krebs, H., Lee, D. & Meißner, U.-G. Two-particle scattering on the lattice: phase shifts, spin-orbit coupling, and mixing angles. Eur. Phys. J. A 34, 185–196 (2007)

    CAS  Article  ADS  Google Scholar 

  26. Higa, R., Hammer, H.-W. & van Kolck, U. αα scattering in halo effective field theory. Nucl. Phys. A 809, 171–188 (2008)

    Article  ADS  CAS  Google Scholar 

  27. Chen, J.-W., Lee, D. & Schaefer, T. Inequalities for light nuclei in the Wigner symmetry limit. Phys. Rev. Lett. 93, 242302 (2004)

    Article  ADS  CAS  PubMed  Google Scholar 

  28. Avila, M. L. et al. Constraining the 6.05 MeV 0+ and 6.13 MeV 3 cascade transitions in the 12C(α, γ)16O reaction using the asymptotic normalization coefficients. Phys. Rev. Lett. 114, 071101 (2015)

    CAS  Article  ADS  PubMed  Google Scholar 

  29. Schürmann, D., Gialanella, L., Kunz, R. & Strieder, F. The astrophysical S factor of 12C(α, γ)16O at stellar energy. Phys. Lett. B 711, 35–40 (2012)

    Article  ADS  CAS  Google Scholar 

  30. Zhang, X., Nollett, K. M. & Phillips, D. R. Combining ab initio calculations and low-energy effective field theory for halo nuclear systems: the case of 7Be + p8B + γ. Phys. Rev. C 89, 051602(R) (2014)

    Article  ADS  CAS  Google Scholar 

  31. Epelbaum, E., Krebs, H., Lee, D. & Meißner, U.-G. Lattice calculations for A = 3, 4, 6, 12 nuclei using chiral effective field theory. Eur. Phys. J. A 45, 335–352 (2010)

    CAS  Article  ADS  Google Scholar 

  32. Hubbard, J. Calculation of partition functions. Phys. Rev. Lett. 3, 77–78 (1959)

    Article  ADS  Google Scholar 

  33. Stratonovich, R. L. On a method of calculating quantum distribution functions. Sov. Phys. Dokl. 2, 416–419 (1958)

    ADS  MATH  Google Scholar 

  34. Koonin, S. E. Auxiliary-field Monte Carlo methods. J. Stat. Phys. 43, 985–990 (1986)

    Article  ADS  MathSciNet  Google Scholar 

  35. Lee, D. Spectral convexity for attractive SU(2N) fermions. Phys. Rev. Lett. 98, 182501 (2007)

    Article  ADS  CAS  PubMed  Google Scholar 

  36. Wigner, E. On the consequences of the symmetry of the nuclear hamiltonian on the spectroscopy of nuclei. Phys. Rev. 51, 106–119 (1937)

    CAS  Article  ADS  MATH  Google Scholar 

  37. Mehen, T., Stewart, I. W. & Wise, M. B. Wigner symmetry in the limit of large scattering lengths. Phys. Rev. Lett. 83, 931–934 (1999)

    CAS  Article  ADS  Google Scholar 

  38. Kaplan, D. B. & Savage, M. J. The spin-flavor dependence of nuclear forces from large-N QCD. Phys. Lett. B 365, 244–251 (1996)

    CAS  Article  ADS  Google Scholar 

  39. Calle Cordón, A. & Ruiz Arriola, E. Wigner symmetry, large N c and renormalized one-boson exchange potential. Phys. Rev. C 78, 054002 (2008)

    Article  ADS  CAS  Google Scholar 

  40. Beane, S. et al. Nucleon-nucleon scattering parameters in the limit of SU(3) flavor symmetry. Phys. Rev. C 88, 024003 (2013)

    Article  ADS  CAS  Google Scholar 

  41. Beane, S. R. et al. Ab initio calculation of the np radiative capture process. Phys. Rev. Lett. 115, 132001 (2015)

    Article  ADS  CAS  PubMed  Google Scholar 

  42. Scalettar, R. T., Scalapino, D. J. & Sugar, R. L. New algorithm for the numerical simulation of fermions. Phys. Rev. B 34, 7911–7917 (1986)

    CAS  Article  ADS  Google Scholar 

  43. Gottlieb, S., Liu, W., Toussaint, D., Renken, R. L. & Sugar, R. L. Hybrid molecular dynamics algorithms for the numerical simulation of quantum chromodynamics. Phys. Rev. D 35, 2531–2542 (1987)

    CAS  Article  ADS  Google Scholar 

  44. Duane, S., Kennedy, A. D., Pendleton, B. J. & Roweth, D. Hybrid Monte Carlo. Phys. Lett. B 195, 216–222 (1987)

    CAS  Article  ADS  MathSciNet  Google Scholar 

  45. Carlson, J., Pandharipande, V. & Wiringa, R. Variational calculations of resonant states in 4He. Nucl. Phys. A 424, 47–59 (1984)

    Article  ADS  Google Scholar 

  46. Kong, X. & Ravndal, F. Coulomb effects in low-energy proton proton scattering. Nucl. Phys. A 665, 137–163 (2000)

    Article  ADS  Google Scholar 

  47. Rupak, G. & Kong, X.-w. Quartet S-wave pd scattering in EFT. Nucl. Phys. A 717, 73–90 (2003)

    Article  ADS  CAS  Google Scholar 

  48. Bethe, H. A. Theory of the effective range in nuclear scattering. Phys. Rev. 76, 38–50 (1949)

    CAS  Article  ADS  MATH  Google Scholar 

  49. Jackson, J. D. & Blatt, J. M. The interpretation of low energy proton-proton scattering. Rev. Mod. Phys. 22, 77–118 (1950)

    CAS  Article  ADS  Google Scholar 

  50. König, S., Lee, D. & Hammer, H.-W. Causality constraints for charged particles. J. Phys. G 40, 045106 (2013)

    Article  ADS  CAS  Google Scholar 

  51. Tilley, D. R. et al. Energy levels of light nuclei A = 8, 9, 10. Nucl. Phys. A 745, 155–362 (2004)

    Article  ADS  CAS  Google Scholar 

  52. Hoop, B., Hale, G. M. & Navratil, P. Neutron-4He resonant scattering at d-3H threshold. Preprint at http://arxiv.org/abs/1111.0985 (2011)

  53. Orlov, Yu. V., Irgaziev, B. F. & Nikitina, L. I. Asymptotic normalization coefficients of resonant and bound states from the phase shifts for αα and α12C scattering. Preprint at http://arxiv.org/abs/1508.07538 (2015)

  54. Hupin, G., Quaglioni, S. & Navrátil, P. Predictive theory for elastic scattering and recoil of protons from 4He. Phys. Rev. C 90, 061601(R) (2014)

    Article  ADS  CAS  Google Scholar 

  55. Page, P. R. & Hale, G. M. 8Be nuclear data evaluation. AIP Conf. Proc. 769, 390–393 (2005)

    CAS  Article  ADS  Google Scholar 

  56. Gazit, D., Quaglioni, S. & Navrátil, P. Three-nucleon low-energy constants from the consistency of interactions and currents in chiral effective field theory. Phys. Rev. Lett. 103, 102502 (2009)

    Article  ADS  CAS  PubMed  Google Scholar 

  57. Klein, N., Lee, D., Liu, W. & Meißner, U.-G. Regularization methods for nuclear lattice effective field theory. Phys. Lett. B 747, 511–516 (2015)

    CAS  Article  ADS  MATH  Google Scholar 

  58. Lu, B.-N., Lähde, T. A., Lee, D. & Meißner, U.-G. Breaking and restoration of rotational symmetry on the lattice for bound state multiplets. Phys. Rev. D 90, 034507 (2014)

    Article  ADS  CAS  Google Scholar 

  59. Lu, B.-N., Lähde, T. A., Lee, D. & Meißner, U.-G. Breaking and restoration of rotational symmetry for irreducible tensor operators on the lattice. Phys. Rev. D 92, 014506 (2015)

    Article  ADS  CAS  Google Scholar 

  60. Yamazaki, T., Ishikawa, K.-i., Kuramashi, Y. & Ukawa, A. Helium nuclei, deuteron and dineutron in 2 + 1 flavor lattice QCD. Phys. Rev. D 86, 074514 (2012)

    Article  ADS  CAS  Google Scholar 

  61. Berkowitz, E. et al. Two-nucleon higher partial-wave scattering from lattice QCD. Preprint at http://arxiv.org/abs/1508.00886 (2015)

  62. Chang, E. et al. The magnetic structure of light nuclei from lattice QCD. Preprint at http://arxiv.org/abs/1506.05518 (2015)

  63. Epelbaum, E., Krebs, H., Lee, D. & Meißner, U.-G. Lattice effective field theory calculations for A = 3, 4, 6, 12 nuclei. Phys. Rev. Lett. 104, 142501 (2010)

    Article  ADS  CAS  PubMed  Google Scholar 

  64. Lähde, T. A. et al. Lattice effective field theory for medium-mass nuclei. Phys. Lett. B 732, 110–115 (2014)

    Article  ADS  CAS  Google Scholar 

  65. Epelbaum, E., Krebs, H., Lee, D. & Meißner, U.-G. Ground state energy of dilute neutron matter at next-to-leading order in lattice chiral effective field theory. Eur. Phys. J. A 40, 199–213 (2009)

    CAS  Article  ADS  Google Scholar 

  66. Wlazłowski, G., Holt, J. W., Moroz, S., Bulgac, A. & Roche, K. J. Auxiliary-field quantum Monte Carlo simulations of neutron matter in chiral effective field theory. Phys. Rev. Lett. 113, 182503 (2014)

    Article  ADS  CAS  PubMed  Google Scholar 

  67. Rupak, G. & Higa, R. Model-independent calculation of radiative neutron capture on lithium-7. Phys. Rev. Lett. 106, 222501 (2011)

    Article  ADS  CAS  PubMed  Google Scholar 

  68. Acharya, B. & Phillips, D. R. 19Carbon in halo EFT: effective-range parameters from Coulomb-dissociation experiments. Nucl. Phys. A 913, 103–115 (2013)

    CAS  Article  ADS  Google Scholar 

  69. Ji, C., Elster, C. & Phillips, D. R. 6He nucleus in halo effective field theory. Phys. Rev. C 90, 044004 (2014)

    Article  ADS  CAS  Google Scholar 

  70. Ryberg, E., Forssén, C., Hammer, H.-W. & Platter, L. Constraining low-energy proton capture on beryllium-7 through charge radius measurements. Eur. Phys. J. A 50, 170 (2014)

    Article  ADS  CAS  Google Scholar 

Download references

Acknowledgements

We acknowledge discussions with G. Hale and partial financial support from the Deutsche Forschungsgemeinschaft (Sino-German CRC 110), the Helmholtz Association (contract no. VH-VI-417), BMBF (grant no. 05P12PDFTE), the US Department of Energy (DE-FG02-03ER41260), and US National Science Foundation grant no. PHY-1307453. Further support was provided by the EU HadronPhysics3 project, the ERC project no. 259218 NUCLEAREFT, and the Magnus Ehrnrooth Foundation of the Finnish Society of Sciences and Letters. The computational resources were provided by the Jülich Supercomputing Centre at Forschungszentrum Jülich and by RWTH Aachen.

Author information

Authors and Affiliations

Authors

Contributions

S.E. performed the analysis of the scattering data. S.E., E.E., H.K., D.L., and G.R. were involved in conceptual development of the adiabatic projection method. S.E. and T.L. produced the figures. T.A.L., D.L., T.L., and U.-G.M. obtained supercomputing time and developed the code. All authors were involved in writing, editing, and reviewing the manuscript.

Corresponding author

Correspondence to Dean Lee.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Extended data figures and tables

Extended Data Figure 1 Schematic overview of our method.

We start with an eight-body system of protons and neutrons. Each alpha-particle wave packet consists of four nucleons. The protons are red, the neutrons are blue, and the spins are represented by arrows. Next, we perfom ab initio lattice Monte Carlo simulations to construct the adiabatic Hamiltonian for two alpha clusters (grey spheres). Finally, we use the adiabatic Hamiltonian to compute alpha–alpha scattering phase shifts.

Extended Data Figure 2 s-wave extrapolations at NNLO.

ag, NNLO results (circles) for the s-wave phase shift δ0 versus Lt at laboratory energy ELab = 1.00 MeV, 2.00 MeV, 3.00 MeV, 6.96 MeV, 8.87 MeV, 10.88 MeV, and 12.30 MeV, respectively, as labelled. The theoretical error bars indicate 1 s.d. uncertainty due to Monte Carlo errors. The dot-dashed lines are fits to the data, used to extrapolate the Lt → ∞ limits. The red hatched regions indicate the 1 s.d. error estimate of the extrapolation.

Extended Data Figure 3 d-wave extrapolations at NNLO.

ag, NNLO results (circles) for the d-wave phase shift δ2 versus Lt at laboratory energy ELab = 2.00 MeV, 3.00 MeV, 5.26 MeV, 6.96 MeV, 8.87 MeV, 9.88 MeV, and 10.88 MeV, respectively, as labelled. The theoretical error bars indicate 1 s.d. uncertainty due to Monte Carlo errors. The dot-dashed lines are fits to the data, used to extrapolate the Lt → ∞ limits. The red hatched regions indicate the 1 s.d. error estimate of the extrapolation.

PowerPoint slides

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Elhatisari, S., Lee, D., Rupak, G. et al. Ab initio alpha–alpha scattering. Nature 528, 111–114 (2015). https://doi.org/10.1038/nature16067

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nature16067

Further reading

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing