Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Building the foundation for genomics in precision medicine

Abstract

Precision medicine has the potential to profoundly improve the practice of medicine. However, the advances required will take time to implement. Genetics is already being used to direct clinical decision-making and its contribution is likely to increase. To accelerate these advances, fundamental changes are needed in the infrastructure and mechanisms for data collection, storage and sharing. This will create a continuously learning health-care system with seamless cycling between clinical care and research. Patients must be educated about the benefits of sharing data. The building blocks for such a system are already forming and they will accelerate the adoption of precision medicine.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: The precision-medicine ecosystem.
Figure 2: Stages of the genetic interpretation process.
Figure 3: Creating and implementing robust standards for the description and structuring of data in laboratory processing and patient-care systems.
Figure 4: Example of a learning health-care system.

Similar content being viewed by others

References

  1. Lynch, T. J. et al. Activating mutations in the epidermal growth factor receptor underlying responsiveness of non-small-cell lung cancer to gefitinib. N. Engl. J. Med. 350, 2129–2139 (2004).

    Article  CAS  Google Scholar 

  2. Paez, J. G. et al. EGFR mutations in lung cancer: correlation with clinical response to gefitinib therapy. Science 304, 1497–1500 (2004).

    Article  CAS  ADS  Google Scholar 

  3. Morel, C. F. & Clarke, J. T. The use of agalsidase alfa enzyme replacement therapy in the treatment of Fabry disease. Expert Opin. Biol. Ther. 9, 631–639 (2009).

    Article  CAS  Google Scholar 

  4. Relling, M. V. et al. Clinical Pharmacogenetics Implementation Consortium guidelines for thiopurine methyltransferase genotype and thiopurine dosing: 2013 update. Clin. Pharmacol. Ther. 93, 324–325 (2013).

    Article  CAS  Google Scholar 

  5. Martin, M. A. et al. Clinical pharmacogenetics implementation consortium guidelines for HLA-B genotype and abacavir dosing: 2014 update. Clin. Pharmacol. Ther. 95, 499–500 (2014).

    Article  Google Scholar 

  6. Cutting, G. R. Cystic fibrosis genetics: from molecular understanding to clinical application. Nature Rev. Genet. 16, 45–56 (2015).

    Article  CAS  Google Scholar 

  7. Spurdle, A. B. et al. ENIGMA—evidence-based network for the interpretation of germline mutant alleles: an international initiative to evaluate risk and clinical significance associated with sequence variation in BRCA1 and BRCA2 genes. Hum. Mutat. 33, 2–7 (2012).

    Article  CAS  Google Scholar 

  8. Domchek, S. M. et al. Association of risk-reducing surgery in BRCA1 or BRCA2 mutation carriers with cancer risk and mortality. J. Am. Med. Assoc. 304, 967–975 (2010).

    Article  CAS  Google Scholar 

  9. Audeh, M. W. et al. Oral poly(ADP-ribose) polymerase inhibitor olaparib in patients with BRCA1 or BRCA2 mutations and recurrent ovarian cancer: a proof-of-concept trial. Lancet 376, 245–251 (2010).

    Article  CAS  Google Scholar 

  10. Tutt, A. et al. Oral poly(ADP-ribose) polymerase inhibitor olaparib in patients with BRCA1 or BRCA2 mutations and advanced breast cancer: a proof-of-concept trial. Lancet 376, 235–244 (2010).

    Article  CAS  Google Scholar 

  11. Rehm, H. L. et al. ClinGen — The Clinical Genome Resource. N. Engl. J. Med. 372, 2235–2242 (2015). This article describes ClinGen, an NIH-supported programme to build an authoritative central resource that defines the clinical relevance of genomic variants for use in precision medicine and research, employing systematic sharing of clinical knowledge and expert curation.

    Article  CAS  Google Scholar 

  12. US Department of Veterans Affairs Office of Research & Development. Informed Consent for Human Subjects Research: a Primer http://www.research.va.gov/resources/pubs/docs/consent_primer_final.pdf (VA Boston Health Care System, 2002).

  13. Jameson, E., Jones, S. & Wraith, J. E. Enzyme replacement therapy with laronidase (Aldurazyme®) for treating mucopolysaccharidosis type I. Cochrane Database Syst. Rev. 11, CD009354 (2013).

    Google Scholar 

  14. Hacein-Bey Abina, S. et al. Outcomes following gene therapy in patients with severe Wiskott–Aldrich syndrome. J. Am. Med. Assoc. 313, 1550–1563 (2015).

    Article  Google Scholar 

  15. Murphy, S. N. et al. High throughput tools to access images from clinical archives for research. J. Digit. Imaging 28, 194–204 (2015).

    Article  Google Scholar 

  16. McCarty, C. A. et al. The eMERGE Network: a consortium of biorepositories linked to electronic medical records data for conducting genomic studies. BMC Med. Genomics 4, 13 (2011).

    Article  Google Scholar 

  17. Allen, N. L. et al. Biobank participants' preferences for disclosure of genetic research results: perspectives from the OurGenes, OurHealth, OurCommunity project. Mayo Clin. Proc. 89, 738–746 (2014).

    Article  Google Scholar 

  18. Toledo, J. B. et al. A platform for discovery: The University of Pennsylvania Integrated Neurodegenerative Disease Biobank. Alzheimers Dement. 10, 477–484 (2014).

    Article  Google Scholar 

  19. Milani, L., Leitsalu, L. & Metspalu, A. An epidemiological perspective of personalized medicine: the Estonian experience. J. Intern. Med. 277, 188–200 (2015).

    Article  CAS  Google Scholar 

  20. Knoppers, B. M. Framework for responsible sharing of genomic and health-related data. HUGO J. 8, 3 (2014).

    Article  Google Scholar 

  21. Korf, B. R. & Rehm, H. L. New approaches to molecular diagnosis. J. Am. Med. Assoc. 309, 1511–1521 (2013).

    Article  CAS  Google Scholar 

  22. Richards, S. et al. Standards and guidelines for the interpretation of sequence variants: a joint consensus recommendation of the American College of Medical Genetics and Genomics and the Association for Molecular Pathology. Genet. Med. 17, 405–423 (2015). These guidelines provide a standardized approach to the interpretation of genetic variants for monogenic disease.

    Article  Google Scholar 

  23. Hoffman, M. A. & Williams, M. S. Electronic medical records and personalized medicine. Hum. Genet. 130, 33–39 (2011).

    Article  Google Scholar 

  24. Del Fiol, G. et al. Integrating genetic information resources with an EHR. AMIA Annu. Symp. Proc. 2006, 904 (2006).

    Google Scholar 

  25. Aronson, S. J. et al. Communicating new knowledge on previously reported genetic variants. Genet. Med. 14, 713–719 (2012).

    Article  Google Scholar 

  26. Starren, J., Williams, M. S. & Bottinger, E. P. Crossing the omic chasm: a time for omic ancillary systems. J. Am. Med. Assoc. 309, 1237–1238 (2013).

    Article  CAS  Google Scholar 

  27. Kho, A. N. et al. Practical challenges in integrating genomic data into the electronic health record. Genet. Med. 15, 772–778 (2013). This review summarizes challenges that the eMERGE consortium has encountered when integrating genetics into the EHR and suggests approaches for addressing these challenges.

    Article  Google Scholar 

  28. Gottesman, O. et al. The Electronic Medical Records and Genomics (eMERGE) Network: past, present, and future. Genet. Med. 15, 761–771 (2013).

    Article  Google Scholar 

  29. Landrum, M. J. et al. ClinVar: public archive of relationships among sequence variation and human phenotype. Nucleic Acids Res. 42, D980–D985 (2014).

    Article  CAS  Google Scholar 

  30. Béroud, C., Collod-Béroud, G., Boileau, C., Soussi, T. & Junien, C. UMD (Universal Mutation Database): a generic software to build and analyze locus-specific databases. Hum. Mutat. 15, 86–94 (2000).

    Article  Google Scholar 

  31. Sosnay, P. R. et al. Defining the disease liability of variants in the cystic fibrosis transmembrane conductance regulator gene. Nature Genet. 45, 1160–1167 (2013).

    Article  CAS  Google Scholar 

  32. Firth, H. V. et al. DECIPHER: Database of Chromosomal Imbalance and Phenotype in Humans Using Ensembl Resources. Am. J. Hum. Genet. 84, 524–533 (2009).

    Article  CAS  Google Scholar 

  33. Miller, D. T. et al. Consensus statement: chromosomal microarray is a first-tier clinical diagnostic test for individuals with developmental disabilities or congenital anomalies. Am. J. Hum. Genet. 86, 749–764 (2010).

    Article  CAS  Google Scholar 

  34. Thompson, B. A. et al. Application of a 5-tiered scheme for standardized classification of 2,360 unique mismatch repair gene variants in the InSiGHT locus-specific database. Nature Genet. 46, 107–115 (2014).

    Article  CAS  Google Scholar 

  35. Aronson, S. J. et al. The GeneInsight Suite: a platform to support laboratory and provider use of DNA-based genetic testing. Hum. Mutat. 32, 532–536 (2011).

    Article  Google Scholar 

  36. Lerner-Ellis, J., Wang, M., White, S. & Lebo, M. S. & Canadian Open Genetics Repository Group. Canadian Open Genetics Repository (COGR): a unified clinical genomics database as a community resource for standardising and sharing genetic interpretations. J. Med. Genet. 52, 438–445 (2015).

    Article  CAS  Google Scholar 

  37. Riggs, E. R., Jackson, L., Miller, D. T. & Van Vooren, S. Phenotypic information in genomic variant databases enhances clinical care and research: the International Standards for Cytogenomic Arrays Consortium experience. Hum. Mutat. 33, 787–796 (2012).

    Article  Google Scholar 

  38. Tryka, K. A. et al. NCBI's Database of Genotypes and Phenotypes: dbGaP. Nucleic Acids Res. 42, D975–D979 (2014).

    Article  CAS  Google Scholar 

  39. Zhang, J. et al. International Cancer Genome Consortium Data Portal—a one-stop shop for cancer genomics data. Database (Oxford) 2011, bar026 (2011).

  40. The Cancer Genome Atlas Research Network et al. The Cancer Genome Atlas Pan-Cancer analysis project. Nature Genet. 45, 1113–1120 (2013).

  41. Schilsky, R. L., Michels, D. L., Kearbey, A. H., Yu, P. P. & Hudis, C. A. Building a rapid learning health care system for oncology: the regulatory framework of CancerLinQ. J. Clin. Oncol. 32, 2373–2379 (2014). This article provides an overview of the challenges of applying precision medicine techniques to cancer and then describes the CancerLinQ system and the regulatory framework under which it operates.

    Article  Google Scholar 

  42. Philippakis, A. A. et al. The matchmaker exchange: a platform for rare disease gene discovery. Hum. Mutat. http://dx.doi.org/10.1002/humu.22858 (2015). This paper describes an international system for sharing genomic cases to aid in gene discovery.

  43. Buske, O. J. et al. The matchmaker exchange API: automating patient matching through the exchange of structured phenotypic and genotypic profiles. Hum. Mutat. http://dx.doi.org/10.1002/humu.22850 (2015).

  44. Almalki, M., Gray, K. & Sanchez, F. M. The use of self-quantification systems for personal health information: big data management activities and prospects. Health Inf. Sci. Syst. 3 (suppl.), S1 (2015).

    Article  Google Scholar 

  45. Thusberg, J., Olatubosun, A. & Vihinen, M. Performance of mutation pathogenicity prediction methods on missense variants. Hum. Mutat. 32, 358–368 (2011).

    Article  Google Scholar 

  46. Kircher, M. et al. A general framework for estimating the relative pathogenicity of human genetic variants. Nature Genet. 46, 310–315 (2014).

    Article  CAS  Google Scholar 

  47. Jian, X., Boerwinkle, E. & Liu, X. In silico tools for splicing defect prediction: a survey from the viewpoint of end users. Genet. Med. 16, 497–503 (2014).

    Article  CAS  Google Scholar 

  48. The 1000 Genomes Project Consortium. A map of human genome variation from population-scale sequencing. Nature 467, 1061–1073 (2010); erratum 473, 544 (2011).

  49. Stenson, P. D. et al. The Human Gene Mutation Database: building a comprehensive mutation repository for clinical and molecular genetics, diagnostic testing and personalized genomic medicine. Hum. Genet. 133, 1–9 (2014).

    Article  CAS  Google Scholar 

  50. Gargis, A. S. et al. Assuring the quality of next-generation sequencing in clinical laboratory practice. Nature Biotechnol. 30, 1033–1036 (2012).

    Article  CAS  Google Scholar 

  51. Jarchum, I. & Jones, S. DREAMing of benchmarks. Nature Biotechnol. 33, 49–50 (2015).

    Article  CAS  Google Scholar 

  52. Abdallah, K., Hugh-Jones, C., Norman, T., Friend, S. & Stolovitzky, G. The Prostate Cancer DREAM Challenge: A community-wide effort to use open clinical trial data for the quantitative prediction of outcomes in metastatic prostate cancer. Oncologist 20, 459–460 (2015).

    Article  Google Scholar 

  53. O'Driscoll, A., Daugelaite, J. & Sleator, R. D. 'Big data', Hadoop and cloud computing in genomics. J. Biomed. Inform. 46, 774–781 (2013). This review discusses cloud computing and big data concepts and their application to the field of genomics.

    Article  Google Scholar 

  54. Joyner, M. J. & Paneth, N. Seven questions for personalized medicine. J. Am. Med. Assoc. http://dx.doi.org/10.1001/jama.2015.7725 (2015).

Download references

Acknowledgements

H.L.R. was supported in part by NIH grants U41HG006834, U01HG006500 and U19HD077671. S.J.A. was supported in part by U41HG006834.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Heidi L. Rehm.

Ethics declarations

Competing interests

S.J.A. and H.L.R. are employees of Partners HealthCare, which is a stockholder of GeneInsight.

Additional information

Reprints and permissions information is available at www.nature.com/reprints.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Aronson, S., Rehm, H. Building the foundation for genomics in precision medicine. Nature 526, 336–342 (2015). https://doi.org/10.1038/nature15816

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nature15816

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing: Translational Research

Sign up for the Nature Briefing: Translational Research newsletter — top stories in biotechnology, drug discovery and pharma.

Get what matters in translational research, free to your inbox weekly. Sign up for Nature Briefing: Translational Research