Plate tectonics on the Earth triggered by plume-induced subduction initiation

Abstract

Scientific theories of how subduction and plate tectonics began on Earth—and what the tectonic structure of Earth was before this—remain enigmatic and contentious1. Understanding viable scenarios for the onset of subduction and plate tectonics2,3 is hampered by the fact that subduction initiation processes must have been markedly different before the onset of global plate tectonics because most present-day subduction initiation mechanisms require acting plate forces and existing zones of lithospheric weakness, which are both consequences of plate tectonics4. However, plume-induced subduction initiation5,6,7,8,9 could have started the first subduction zone without the help of plate tectonics. Here, we test this mechanism using high-resolution three-dimensional numerical thermomechanical modelling. We demonstrate that three key physical factors combine to trigger self-sustained subduction: (1) a strong, negatively buoyant oceanic lithosphere; (2) focused magmatic weakening and thinning of lithosphere above the plume; and (3) lubrication of the slab interface by hydrated crust. We also show that plume-induced subduction could only have been feasible in the hotter early Earth for old oceanic plates. In contrast, younger plates favoured episodic lithospheric drips rather than self-sustained subduction and global plate tectonics.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Figure 1: Dynamics of plume-induced subduction initiation under present-day mantle temperature conditions.
Figure 2: Development of an embryonic mosaic of plates separated by spreading centres (ridges), triple junctions and transform faults at the latest stage of plume-induced subduction.
Figure 3: Influence of model parameters on the thinning of the oceanic plate under a condition of reduced intensity of magmatism-induced lithospheric weakening.
Figure 4: Plume–lithosphere interaction for hotter mantle temperature and thicker oceanic crust.

References

  1. 1

    Korenaga, J. Initiation and evolution of plate tectonics on Earth: theories and observations. Annu. Rev. Earth Planet. Sci. 41, 117–151 (2013)

    ADS  CAS  Article  Google Scholar 

  2. 2

    Bercovici, D. & Ricard, Y. Plate tectonics, damage and inheritance. Nature 508, 513–516 (2014)

    ADS  CAS  Article  Google Scholar 

  3. 3

    Rey, P. F., Coltice, N. & Flament, N. Spreading continents kick-started plate tectonics. Nature 513, 405–408 (2014)

    ADS  CAS  Article  Google Scholar 

  4. 4

    Stern, R. J. Subduction initiation: spontaneous and induced. Earth Planet. Sci. Lett. 226, 275–292 (2004)

    ADS  CAS  Article  Google Scholar 

  5. 5

    Sandwell, D. T. & Schubert, G. Evidence for retrograde lithospheric subduction of Venus. Science 257, 766–770 (1992)

    ADS  CAS  Article  Google Scholar 

  6. 6

    Ueda, K., Gerya, T. & Sobolev, S. V. Subduction initiation by thermal–chemical plumes: numerical studies. Phys. Earth Planet. Inter. 171, 296–312 (2008)

    ADS  Article  Google Scholar 

  7. 7

    Whattam, S. A. & Stern, R. J. Late Cretaceous plume-induced subduction initiation along the southern margin of the Caribbean and NW South America: the first documented example with implications for the onset of plate tectonics. Gondwana Res. 27, 38–63 (2015)

    ADS  Article  Google Scholar 

  8. 8

    Van Kranendonk, M. J. Two types of Archean continental crust: plume and plate tectonics on early Earth. Am. J. Sci. 310, 1187–1209 (2010)

    ADS  Article  Google Scholar 

  9. 9

    Nair, R. & Chacko, T. Role of oceanic plateaus in the initiation of subduction and origin of continental crust. Geology 36, 583–586 (2008)

    ADS  CAS  Article  Google Scholar 

  10. 10

    Dhuime, B., Hawkesworth, C. J., Cawood, P. A. & Storey, C. D. A change in the geodynamics of continental growth 3 billion years ago. Science 335, 1334–1336 (2012)

    ADS  CAS  Article  Google Scholar 

  11. 11

    Gurnis, M., Hall, C. & Lavier, L. Evolving force balance during incipient subduction. Geochem. Geophys. Geosyst. 5, Q07001 (2004)

    ADS  Article  Google Scholar 

  12. 12

    Hansen, V. L. Subduction origin on early Earth: a hypothesis. Geology 35, 1059–1062 (2007)

    ADS  Article  Google Scholar 

  13. 13

    Moyen, J.-F. & van Hunen, J. Short-term episodicity of Archaean plate tectonics. Geology 40, 451–454 (2012)

    ADS  Article  Google Scholar 

  14. 14

    Keller, T., May, D. A. & Kaus, B. J. P. Numerical modelling of magma dynamics coupled to tectonic deformation of lithosphere and crust. Geophys. J. Int. 195, 1406–1442 (2013)

    ADS  Article  Google Scholar 

  15. 15

    Morgan, J. P., Morgan, W. J. & Price, E. Hotspot melting generates both hotspot volcanism and a hotspot swell? J. Geophys. Res. 100, 8045–8062 (1995)

    ADS  Article  Google Scholar 

  16. 16

    Herzberg, C., Condie, K. & Korenaga, J. Thermal history of the Earth and its petrological expression. Earth Planet. Sci. Lett. 292, 79–88 (2010)

    ADS  CAS  Article  Google Scholar 

  17. 17

    Eldholm, O. & Coffin, M. F. in The History and Dynamics of Global Plate Motion (eds Richards, M. A . et al.) 309–326 (Geophysical Monograph Series, Vol. 121, AGU, 2000)

    Article  Google Scholar 

  18. 18

    Hoernle, K., Hauff, F. & van den Bogaard, P. 70 m.y. history (139–69 Ma) for the Caribbean large igneous province. Geology 32, 697–700 (2004)

    ADS  CAS  Article  Google Scholar 

  19. 19

    Herzberg, C. & Gazel, E. Petrological evidence for secular cooling in mantle plumes. Nature 458, 619–622 (2009)

    ADS  CAS  Article  Google Scholar 

  20. 20

    Jellinek, A. M. & Manga, M. Links between long-lived hot spots, mantle plumes, D″, and plate tectonics. Rev. Geophys. 42, RG3002 (2004)

    ADS  Article  Google Scholar 

  21. 21

    Condie, K. C. & Benn, K. in Archean Geodynamics and Environments (eds Benn, K. et al.) 47–59 (Geophysical Monograph Series, Vol. 164, AGU, 2006)

    Article  Google Scholar 

  22. 22

    Campbell, I. H. in Mantle Plumes: Their Identification Through Time (eds Ernst, R. E. & Buchan, K. L. ) 5–21 (Geological Society of America Special Paper 352, GSA, 2001)

    Google Scholar 

  23. 23

    Olsson, J. R., Söderlund, U., Hamilton, M. A., Klausen, M. B. & Helffrich, G. R. A late Archaean radiating dyke swarm as possible clue to the origin of the Bushveld Complex. Nature Geosci . 4, 865–869 (2011)

    ADS  CAS  Article  Google Scholar 

  24. 24

    Puchtel, I. S. et al. Combined mantle plume-island arc model for the formation of the 2.9 Ga Sumozeor-Kenozero greenstone belt, SE Baltic Shield: isotope and trace element constraints. Geochim. Cosmochim. Acta 63, 3579–3595 (1999)

    ADS  CAS  Article  Google Scholar 

  25. 25

    Wyman, D. A., Kerrich, R. & Polat, A. Assembly of Archean cratonic mantle lithosphere and crust: plume–arc interaction in the Abitibi–Wawa subduction–accretion complex. Precambr. Res. 115, 37–62 (2002)

    ADS  CAS  Article  Google Scholar 

  26. 26

    Smithies, R. H., Champion, D. C., Van Kranendonk, M. J., Howarda, H. M. & Hickmana, A. H. Modern-style subduction processes in the Mesoarchaean: geochemical evidence from the 3.12 Ga Whundo intra-oceanic arc. Earth Planet. Sci. Lett. 231, 221–237 (2005)

    ADS  CAS  Article  Google Scholar 

  27. 27

    Morris, G. A., Larson, P. B. & Hooper, P. R. ‘Subduction style’ magmatism in a non-subducting setting: the Colville Igneous Complex, NE Washington State, USA. J. Petrol. 41, 43–67 (2000)

    ADS  CAS  Article  Google Scholar 

  28. 28

    Willbold, M., Hegner, E., Stracke, A. & Rocholl, A. Continental geochemical signatures in dacites from Iceland and implications for models of early Archaean crust formation. Earth Planet. Sci. Lett. 279, 44–52 (2009)

    ADS  CAS  Article  Google Scholar 

  29. 29

    Barnes, S. J. & Van Kranendonk, M. J. Archean andesites in the east Yilgarn craton, Australia: products of plume-crust interaction? Lithosphere 6, 80–92 (2014)

    ADS  Article  Google Scholar 

  30. 30

    Champion, D. C. & Smithies, R. H . inEarth’s Oldest Rocks (eds van Kranendonk, M. J. et al.) 369–409 (Developments in Precambrian Geology, Vol. 15, Elsevier, 2007)

    Article  Google Scholar 

  31. 31

    Gerya, T. V. Introduction to Numerical Geodynamic Modelling (Cambridge Univ. Press, 2010)

  32. 32

    Gerya, T. V. & Yuen, D. A. Robust characteristics method for modelling multiphase visco-elasto-plastic thermo-mechanical problems. Phys. Earth Planet. Inter. 163, 83–105 (2007)

    ADS  Article  Google Scholar 

  33. 33

    Schmeling, H. et al. A benchmark comparison of spontaneous subduction models: towards a free surface. Phys. Earth Planet. Inter. 171, 198–223 (2008)

    ADS  Article  Google Scholar 

  34. 34

    Turcotte, D. L. & Schubert, G. Geodynamics (Cambridge Univ. Press, 2002)

  35. 35

    Vogt, K., Gerya, T. V. & Castro, A. Crustal growth at active continental margins: numerical modeling. Phys. Earth Planet. Inter. 192–193, 1–20 (2012)

    ADS  Article  Google Scholar 

  36. 36

    Gerya, T. V. Three-dimensional thermomechanical modeling of oceanic spreading initiation and evolution. Phys. Earth Planet. Inter. 214, 35–52 (2013)

    ADS  Article  Google Scholar 

  37. 37

    Katz, R. F. Porosity-driven convection and asymmetry beneath mid-ocean ridges. Geochem. Geophys. Geosyst . 11, Q0AC07 (2010)

    Article  Google Scholar 

  38. 38

    Connolly, J. A. D., Schmidt, M. W., Solferino, G. & Bagdassarov, N. Permeability of asthenospheric mantle and melt extraction rates at mid-ocean ridges. Nature 462, 209–212 (2009)

    ADS  CAS  Article  Google Scholar 

  39. 39

    Katz, R. F., Spiegelman, M. & Langmuir, C. H. A new parameterization of hydrous mantle melting. Geochem. Geophys. Geosyst. 4, 1073 (2003)

    ADS  Article  Google Scholar 

  40. 40

    Nikolaeva, K., Gerya, T. V. & Connolly, J. A. D. Numerical modelling of crustal growth in intraoceanic volcanic arcs. Phys. Earth Planet. Inter. 171, 336–356 (2008)

    ADS  Article  Google Scholar 

  41. 41

    Schutt, D. L. & Lesher, C. E. Effects of melt depletion on the density and seismic velocity of garnet and spinel lherzolite. J. Geophys. Res. 111, B05401 (2006)

    ADS  Article  Google Scholar 

  42. 42

    Gerya, T. V. & Meilick, F. I. Geodynamic regimes of subduction under an active margin: effects of rheological weakening by fluids and melts. J. Metamorph. Geol. 29, 7–31 (2011)

    ADS  Article  Google Scholar 

  43. 43

    Connolly, J. A. D. Computation of phase equilibria by linear programming: a tool for geodynamic modeling and its application to subduction zone decarbonation. Earth Planet. Sci. Lett. 236, 524–541 (2005)

    ADS  CAS  Article  Google Scholar 

  44. 44

    Ito, K. & Kennedy, G. C. in The Structure and Physical Properties of the Earth’s Crust (ed. Heacock, J. G. ) 303–314 (Geophysical Monograph Series, Vol. 14, AGU, 1971)

    Google Scholar 

  45. 45

    Sobolev, S. V. et al. Linking mantle plumes, large igneous provinces and environmental catastrophes. Nature 477, 312–316 (2011)

    ADS  CAS  Article  Google Scholar 

  46. 46

    Byerlee, J. Friction of rocks. Pure Appl. Geophys. 116, 615–626 (1978)

    ADS  Article  Google Scholar 

  47. 47

    Katz, R. F., Spiegelman, M. & Holtzman, B. The dynamics of melt and shear localization in partially molten aggregates. Nature 442, 676–679 (2006)

    ADS  CAS  Article  Google Scholar 

  48. 48

    Dymkova, D. & Gerya, T. Porous fluid flow enables oceanic subduction initiation. Geophys. Res. Lett. 40, 5671–5676 (2013)

    ADS  Article  Google Scholar 

  49. 49

    Mei, S., Bai, W., Hiraga, T. & Kohlstedt, D. Influence of melt on the creep behavior of olivine-basalt aggregates under hydrous conditions. Earth Planet. Sci. Lett. 201, 491–507 (2002)

    ADS  CAS  Article  Google Scholar 

  50. 50

    Kelemen, P., Shimizu, N. & Salters, V. Extraction of mid-ocean-ridge basalt from the upwelling mantle by focused flow of melt in dunite channels. Nature 375, 747–753 (1995)

    ADS  CAS  Article  Google Scholar 

  51. 51

    Rubin, A. M. Dykes vs. diapirs in viscoelastic rock. Earth Planet. Sci. Lett. 119, 641–659 (1993)

    ADS  Article  Google Scholar 

  52. 52

    Pedersen, R., Sigmundsson, F. & Einarsson, P. Controlling factors on earthquake swarms associated with magmatic intrusions; constraints from Iceland. J. Volcanol. Geotherm. Res. 162, 73–80 (2007)

    ADS  CAS  Article  Google Scholar 

  53. 53

    Sigmundsson, F. et al. Intrusion triggering of the 2010 Eyjafjallajökull explosive eruption. Nature 468, 426–430 (2010)

    ADS  CAS  Article  Google Scholar 

  54. 54

    van Dinther, Y. et al. The seismic cycle at subduction thrusts: 2. Dynamic implications of geodynamic simulations validated with laboratory models. J. Geophys. Res. 118, 1502–1525 (2013)

    ADS  Article  Google Scholar 

  55. 55

    Gudmundsson, A. Emplacement and arrest of sheets and dykes in central volcanoes. J. Volcanol. Geotherm. Res. 116, 279–298 (2002)

    ADS  CAS  Article  Google Scholar 

  56. 56

    Gudmundsson, A. Emplacement of dykes, sills and crustal magma chambers at divergent plate boundaries. Tectonophysics 176, 257–275 (1990)

    ADS  Article  Google Scholar 

  57. 57

    Clauser, C. & Huenges, E. in Rock Physics & Phase Relations: A Handbook of Physical Constants (ed. Ahrens, T. J. ) 105–126 (Am. Geophys. Union, 1995)

  58. 58

    Hess, P. C. Origin of Igneous Rocks (Harvard Univ. Press, 1989)

  59. 59

    Schmidt, M. W. & Poli, S. Experimentally based water budgets for dehydrating slabs and consequences for arc magma generation. Earth Planet. Sci. Lett. 163, 361–379 (1998)

    ADS  CAS  Article  Google Scholar 

  60. 60

    Ranalli, G. Rheology of the Earth 2nd edn (Chapman & Hall, 1995)

Download references

Acknowledgements

This study was co-funded by the ERC ITN project ZIP (T.V.G.), the SNF project Swiss-AlpArray (T.V.G.), the SNF grant 200021_149252 (T.V.G.), the ETH grant ETH-37_11-2 (T.V.G.) and a SNF short scientific visits program (R.J.S.). Simulations were performed on the ETH-Zurich Brutus cluster and on the GFZ-Potsdam cluster. Open-source software ParaView (http://www.paraview.org) was used for 3D visualization.

Author information

Affiliations

Authors

Contributions

T.V.G. designed the study, conducted part of the numerical experiments, interpreted the results and designed the 3D thermo-mechanical code. R.J.S. designed the study, analysed the natural data and interpreted the results. M.B. conducted part of the numerical experiments and interpreted the results. S.V.S. designed the study and interpreted the results. S.A.W. analysed the natural data and interpreted the results. All authors discussed the results, problems and methods, interpreted the data and wrote the paper.

Corresponding author

Correspondence to T. V. Gerya.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Extended data figures and tables

Extended Data Figure 1 Numerical model design and boundary conditions.

See Methods for details. 2D cross-section through the centre of the model shows the initial temperature distribution. Colour code for different materials is shown at the bottom of the figure.

Extended Data Figure 2 Influence of the oceanic plate age for plume-induced subduction initiation.

Compare with the reference model shown in Fig. 1. a, 10-Myr-old plate (model, ‘M1’ at 2.55 Myr). b, 60-Myr-old plate (model, ‘M2’ at 0.47 Myr). c, 80-Myr-old plate (model, ‘M3’ at 0.42 Myr). d, 120-Myr-old plate (model, ‘M4’ at 0.42 Myr). Dashed lines indicate positions of the 2D cross-sections shown in the right column. Colour code is the same as that in Fig. 1. See Extended Data Table 2 for details of the models.

Extended Data Figure 3 Freezing of plume-induced subduction due to increased strength of upper (basaltic) oceanic crust.

Compare with the reference model shown in Fig. 1. The model used for the simulations was ‘bsay’; see Extended Data Table 2. a, Oceanic plateau development (at 0.11 Myr). b, Subduction initiation and tearing of the circular slab (at 1.15 Myr). c, Freezing of subduction and detachment of lithospheric drips from the slab edges (at 4.67 Myr). d, Cooling of the plume and thermal relaxation of the lithosphere (at 29.65 Myr).

Extended Data Figure 4 Dynamics of plume-induced lithospheric drips for 20-Myr-old plate with 30-km-thick crust formed under hotter mantle temperature conditions.

The model used for the simulations was ‘bsar’; see Extended Data Table 2. a, Oceanic plateau development (at 0.05 Myr). b, Formation of a circular eclogitic crustal drip at the plateau margins (at 0.26 Myr). c, Detachment of the circular eclogitic drip (at 0.34 Myr). d, Broadening of the plateau and nucleation of the subsequent circular eclogitic drip (at 0.46 Myr).

Extended Data Figure 5 2D hydromechanical numerical model of melt-bearing visco-plastic rock deformation.

See Methods for details. a–h, Results for time step 300 are shown. Model domain size is 500 m × 50 m. Parameters of the numerical experiment correspond to the model ‘L27’ in Extended Data Table 3.

Extended Data Figure 6 2D seismomechanical numerical model of visco-elasto-plastic lithosphere deformation assisted by frequent episodes of dyke propagation.

See Methods for details. a–h, Results for time step 1,555 (propagation of dyke number 16) are shown. Model domain size is 3,000 m × 3,000 m. Parameters of the numerical experiment correspond to the model ‘D65’ in Extended Data Table 4.

Extended Data Table 1 Physical properties of rocks used in numerical experiments
Extended Data Table 2 Conditions and results of 3D numerical experiments for plume-induced subduction initiation
Extended Data Table 3 Conditions and results of 2D hydromechanical numerical experiments for melt-bearing rock deformation
Extended Data Table 4 Conditions and results of 2D seismomechanical numerical experiments for lithospheric deformation assisted by dyke propagation

PowerPoint slides

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Gerya, T., Stern, R., Baes, M. et al. Plate tectonics on the Earth triggered by plume-induced subduction initiation. Nature 527, 221–225 (2015). https://doi.org/10.1038/nature15752

Download citation

Further reading

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.