Article | Published:

Measuring entanglement entropy in a quantum many-body system

Nature volume 528, pages 7783 (03 December 2015) | Download Citation

Abstract

Entanglement is one of the most intriguing features of quantum mechanics. It describes non-local correlations between quantum objects, and is at the heart of quantum information sciences. Entanglement is now being studied in diverse fields ranging from condensed matter to quantum gravity. However, measuring entanglement remains a challenge. This is especially so in systems of interacting delocalized particles, for which a direct experimental measurement of spatial entanglement has been elusive. Here, we measure entanglement in such a system of itinerant particles using quantum interference of many-body twins. Making use of our single-site-resolved control of ultracold bosonic atoms in optical lattices, we prepare two identical copies of a many-body state and interfere them. This enables us to directly measure quantum purity, Rényi entanglement entropy, and mutual information. These experiments pave the way for using entanglement to characterize quantum phases and dynamics of strongly correlated many-body systems.

Access optionsAccess options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

References

  1. 1.

    , , & Quantum entanglement. Rev. Mod. Phys. 81, 865 (2009)

  2. 2.

    Bell’s inequality test: more ideal than ever. Nature 398, 189–190 (1999)

  3. 3.

    & Quantum Computation and Quantum Information (Cambridge Univ. Press, 2010)

  4. 4.

    , , & Entanglement in many-body systems. Rev. Mod. Phys. 80, 517 (2008)

  5. 5.

    & Entanglement entropy and conformal field theory. J. Phys. A 42, 504005 (2009)

  6. 6.

    , & Holographic entanglement entropy: an overview. J. Phys. A 42, 504008 (2009)

  7. 7.

    , & Colloquium: area laws for the entanglement entropy. Rev. Mod. Phys. 82, 277 (2010)

  8. 8.

    & Topological entanglement entropy. Phys. Rev. Lett. 96, 110404 (2006)

  9. 9.

    & Detecting topological order in a ground state wave function. Phys. Rev. Lett. 96, 110405 (2006)

  10. 10.

    , & Identifying topological order by entanglement entropy. Nature Phys. 8, 902–905 (2012)

  11. 11.

    , & Entanglement entropy of critical spin liquids. Phys. Rev. Lett. 107, 067202 (2011)

  12. 12.

    , & Topological entanglement entropy of a Bose–Hubbard spin liquid. Nature Phys. 7, 772–775 (2011)

  13. 13.

    , , & Entanglement in quantum critical phenomena. Phys. Rev. Lett. 90, 227902 (2003)

  14. 14.

    , & Unbounded growth of entanglement in models of many-body localization. Phys. Rev. Lett. 109, 017202 (2012)

  15. 15.

    , , & Measuring entanglement growth in quench dynamics of bosons in an optical lattice. Phys. Rev. Lett. 109, 020505 (2012)

  16. 16.

    , , & Entropy scaling and simulability by matrix product states. Phys. Rev. Lett. 100, 030504 (2008)

  17. 17.

    , & Quantum simulations with ultracold quantum gases. Nature Phys. 8, 267–276 (2012)

  18. 18.

    & Quantum simulations with trapped ions. Nature Phys. 8, 277–284 (2012)

  19. 19.

    & Photonic quantum simulators. Nature Phys. 8, 285–291 (2012)

  20. 20.

    , & On-chip quantum simulation with superconducting circuits. Nature Phys. 8, 292–299 (2012)

  21. 21.

    , , , & Observation of three-photon Greenberger-Horne-Zeilinger entanglement. Phys. Rev. Lett. 82, 1345–1349 (1999)

  22. 22.

    & Entanglement detection. Phys. Rep. 474, 1–75 (2009)

  23. 23.

    , , & Measurement of qubits. Phys. Rev. A 64, 052312 (2001)

  24. 24.

    et al. Multiphoton entanglement and interferometry. Rev. Mod. Phys. 84, 777 (2012)

  25. 25.

    et al. Scalable multiparticle entanglement of trapped ions. Nature 438, 643–646 (2005)

  26. 26.

    et al. Direct estimations of linear and nonlinear functionals of a quantum state. Phys. Rev. Lett. 88, 217901 (2002)

  27. 27.

    & Multipartite entanglement detection in bosons. Phys. Rev. Lett. 93, 110501 (2004)

  28. 28.

    et al. Probing the superfluid–to–Mott insulator transition at the single-atom level. Science 329, 547–550 (2010)

  29. 29.

    Measuring polynomial functions of states. Quantum Inform. Comput. 4, 401–408 (2004)

  30. 30.

    et al. Direct measurement of nonlinear properties of bipartite quantum states. Phys. Rev. Lett. 95, 240407 (2005)

  31. 31.

    , , , & Experimental determination of entanglement with a single measurement. Nature 440, 1022–1024 (2006)

  32. 32.

    et al. Experimental direct observation of mixed state entanglement. Phys. Rev. Lett. 101, 260505 (2008)

  33. 33.

    & et al. Information-theoretic aspects of inseparability of mixed states. Phys. Rev. A 54, 1838 (1996)

  34. 34.

    & Observable entanglement measure for mixed quantum states. Phys. Rev. Lett. 98, 140505 (2007)

  35. 35.

    & Entanglement spectrum as a generalization of entanglement entropy: identification of topological order in non-abelian fractional quantum Hall effect states. Phys. Rev. Lett. 101, 010504 (2008)

  36. 36.

    , & Measurement of subpicosecond time intervals between two photons by interference. Phys. Rev. Lett. 59, 2044 (1987)

  37. 37.

    et al. Two-particle quantum interference in tunnel-coupled optical tweezers. Science 345, 306–309 (2014)

  38. 38.

    et al. Atomic Hong–Ou–Mandel experiment. Nature 520, 66–68 (2015)

  39. 39.

    et al. Spatial entanglement of bosons in optical lattices. Nat. Commun. 4, 2161 (2013)

  40. 40.

    et al. Spatially resolved detection of a spin-entanglement wave in a Bose–Hubbard chain. Phys. Rev. Lett. 115, 035302 (2015)

  41. 41.

    & Entanglement constrained by superselection rules. Phys. Rev. Lett. 91, 097903 (2003)

  42. 42.

    , & Nonlocal resources in the presence of superselection rules. Phys. Rev. Lett. 92, 087904 (2004)

  43. 43.

    , & Detection and characterization of multipartite entanglement in optical lattices. Phys. Rev. A 72, 042335 (2005)

  44. 44.

    , , & Area laws in quantum systems: mutual information and correlations. Phys. Rev. Lett. 100, 070502 (2008)

  45. 45.

    , & Hiding bits in Bell states. Phys. Rev. Lett. 86, 5807–5810 (2001)

  46. 46.

    Efficient simulation of one-dimensional quantum many-body systems. Phys. Rev. Lett. 93, 040502 (2004)

  47. 47.

    et al. Probing the relaxation towards equilibrium in an isolated strongly correlated one-dimensional Bose gas. Nature Phys. 8, 325–330 (2012)

  48. 48.

    , , , & Controlling and detecting spin correlations of ultracold atoms in optical lattices. Phys. Rev. Lett. 105, 265303 (2010)

  49. 49.

    , , , & Thermal versus entanglement entropy: a measurement protocol for fermionic atoms with a quantum gas microscope. New J. Phys. 15, 063003 (2013)

  50. 50.

    , & Thermalization and its mechanism |for generic isolated quantum systems. Nature 452, 854–858 (2008)

  51. 51.

    & Ground state overlap and quantum phase transitions. Phys. Rev. E 74, 031123 (2006)

Download references

Acknowledgements

We thank D. Abanin, J. I. Cirac, M. Cramer, A. Daley, A. DelMaestro, E. Demler, M. Endres, S. Gopalakrishnan, M. Headrick, A. Kaufman, M. Knap, T. Monz, A. Pal, H. Pichler, S. Sachdev, B. Swingle, P. Zoller, and M. Zwierlein for useful discussions. This work was supported by grants from the Gordon and Betty Moore Foundations EPiQS Initiative (grant GBMF3795), the NSF through the Center for Ultracold Atoms, the Army Research Office with funding from the DARPA OLE programme and a MURI programme, an Air Force Office of Scientific Research MURI programme, and an NSF Graduate Research Fellowship (to M.R.).

Author information

Affiliations

  1. Department of Physics, Harvard University, Cambridge, Massachusetts 02138, USA

    • Rajibul Islam
    • , Ruichao Ma
    • , Philipp M. Preiss
    • , M. Eric Tai
    • , Alexander Lukin
    • , Matthew Rispoli
    •  & Markus Greiner

Authors

  1. Search for Rajibul Islam in:

  2. Search for Ruichao Ma in:

  3. Search for Philipp M. Preiss in:

  4. Search for M. Eric Tai in:

  5. Search for Alexander Lukin in:

  6. Search for Matthew Rispoli in:

  7. Search for Markus Greiner in:

Contributions

All authors contributed to the construction and execution of the experiments, data analysis and the writing of the manuscript.

Competing interests

The authors declare no competing financial interests.

Corresponding author

Correspondence to Markus Greiner.

Supplementary information

PDF files

  1. 1.

    Supplementary Information

    This file contains Supplementary Text and Data, Supplementary Figures 1-6 and Supplementary References.

About this article

Publication history

Received

Accepted

Published

DOI

https://doi.org/10.1038/nature15750

Further reading

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.