Abstract
Entanglement is one of the most intriguing features of quantum mechanics. It describes non-local correlations between quantum objects, and is at the heart of quantum information sciences. Entanglement is now being studied in diverse fields ranging from condensed matter to quantum gravity. However, measuring entanglement remains a challenge. This is especially so in systems of interacting delocalized particles, for which a direct experimental measurement of spatial entanglement has been elusive. Here, we measure entanglement in such a system of itinerant particles using quantum interference of many-body twins. Making use of our single-site-resolved control of ultracold bosonic atoms in optical lattices, we prepare two identical copies of a many-body state and interfere them. This enables us to directly measure quantum purity, Rényi entanglement entropy, and mutual information. These experiments pave the way for using entanglement to characterize quantum phases and dynamics of strongly correlated many-body systems.
This is a preview of subscription content, access via your institution
Relevant articles
Open Access articles citing this article.
-
Entanglement and quantum correlations in the XX spin-1/2 honeycomb lattice
Scientific Reports Open Access 26 October 2022
-
A quantum processor based on coherent transport of entangled atom arrays
Nature Open Access 20 April 2022
Access options
Subscribe to this journal
Receive 51 print issues and online access
$199.00 per year
only $3.90 per issue
Rent or buy this article
Get just this article for as long as you need it
$39.95
Prices may be subject to local taxes which are calculated during checkout






References
Horodecki, R., Horodecki, P., Horodecki, M. & Horodecki, K. Quantum entanglement. Rev. Mod. Phys. 81, 865 (2009)
Aspect, A. Bell’s inequality test: more ideal than ever. Nature 398, 189–190 (1999)
Nielsen, M. A. & Chuang, I. L. Quantum Computation and Quantum Information (Cambridge Univ. Press, 2010)
Amico, L., Fazio, R., Osterloh, A. & Vedral, V. Entanglement in many-body systems. Rev. Mod. Phys. 80, 517 (2008)
Calabrese, P. & Cardy, J. Entanglement entropy and conformal field theory. J. Phys. A 42, 504005 (2009)
Nishioka, T., Ryu, S. & Takayanagi, T. Holographic entanglement entropy: an overview. J. Phys. A 42, 504008 (2009)
Eisert, J., Cramer, M. & Plenio, M. B. Colloquium: area laws for the entanglement entropy. Rev. Mod. Phys. 82, 277 (2010)
Kitaev, A. & Preskill, J. Topological entanglement entropy. Phys. Rev. Lett. 96, 110404 (2006)
Levin, M. & Wen, X.-G. Detecting topological order in a ground state wave function. Phys. Rev. Lett. 96, 110405 (2006)
Jiang, H.-C., Wang, Z. & Balents, L. Identifying topological order by entanglement entropy. Nature Phys. 8, 902–905 (2012)
Zhang, Y., Grover, T. & Vishwanath, A. Entanglement entropy of critical spin liquids. Phys. Rev. Lett. 107, 067202 (2011)
Isakov, S. V., Hastings, M. B. & Melko, R. G. Topological entanglement entropy of a Bose–Hubbard spin liquid. Nature Phys. 7, 772–775 (2011)
Vidal, G., Latorre, J. I., Rico, E. & Kitaev, A. Entanglement in quantum critical phenomena. Phys. Rev. Lett. 90, 227902 (2003)
Bardarson, J. H., Pollmann, F. & Moore, J. E. Unbounded growth of entanglement in models of many-body localization. Phys. Rev. Lett. 109, 017202 (2012)
Daley, A. J., Pichler, H., Schachenmayer, J. & Zoller, P. Measuring entanglement growth in quench dynamics of bosons in an optical lattice. Phys. Rev. Lett. 109, 020505 (2012)
Schuch, N., Wolf, M. M., Verstraete, F. & Cirac, J. I. Entropy scaling and simulability by matrix product states. Phys. Rev. Lett. 100, 030504 (2008)
Bloch, I., Dalibard, J. & Nascimbène, S. Quantum simulations with ultracold quantum gases. Nature Phys. 8, 267–276 (2012)
Blatt, R. & Roos, C. F. Quantum simulations with trapped ions. Nature Phys. 8, 277–284 (2012)
Aspuru-Guzik, A. & Walther, P. Photonic quantum simulators. Nature Phys. 8, 285–291 (2012)
Houck, A. A., Türeci, H. E. & Koch, J. On-chip quantum simulation with superconducting circuits. Nature Phys. 8, 292–299 (2012)
Bouwmeester, D., Pan, J.-W., Daniell, M., Weinfurter, H. & Zeilinger, A. Observation of three-photon Greenberger-Horne-Zeilinger entanglement. Phys. Rev. Lett. 82, 1345–1349 (1999)
Gühne, O. & Tóth, G. Entanglement detection. Phys. Rep. 474, 1–75 (2009)
James, D. F. V., Kwiat, P. G., Munro, W. J. & White, A. G. Measurement of qubits. Phys. Rev. A 64, 052312 (2001)
Pan, J.-W. et al. Multiphoton entanglement and interferometry. Rev. Mod. Phys. 84, 777 (2012)
Häffner, H. et al. Scalable multiparticle entanglement of trapped ions. Nature 438, 643–646 (2005)
Ekert, A. K. et al. Direct estimations of linear and nonlinear functionals of a quantum state. Phys. Rev. Lett. 88, 217901 (2002)
Moura Alves, C. & Jaksch, D. Multipartite entanglement detection in bosons. Phys. Rev. Lett. 93, 110501 (2004)
Bakr, W. S. et al. Probing the superfluid–to–Mott insulator transition at the single-atom level. Science 329, 547–550 (2010)
Brun, T. A. Measuring polynomial functions of states. Quantum Inform. Comput. 4, 401–408 (2004)
Bovino, F. A. et al. Direct measurement of nonlinear properties of bipartite quantum states. Phys. Rev. Lett. 95, 240407 (2005)
Walborn, S. P., Ribeiro, P. S., Davidovich, L., Mintert, F. & Buchleitner, A. Experimental determination of entanglement with a single measurement. Nature 440, 1022–1024 (2006)
Schmid, C. et al. Experimental direct observation of mixed state entanglement. Phys. Rev. Lett. 101, 260505 (2008)
Horodecki, R. & Horodecki, M. et al. Information-theoretic aspects of inseparability of mixed states. Phys. Rev. A 54, 1838 (1996)
Mintert, F. & Buchleitner, A. Observable entanglement measure for mixed quantum states. Phys. Rev. Lett. 98, 140505 (2007)
Li, H. & Haldane, F. D. M. Entanglement spectrum as a generalization of entanglement entropy: identification of topological order in non-abelian fractional quantum Hall effect states. Phys. Rev. Lett. 101, 010504 (2008)
Hong, C. K., Ou, Z. Y. & Mandel, L. Measurement of subpicosecond time intervals between two photons by interference. Phys. Rev. Lett. 59, 2044 (1987)
Kaufman, A. M. et al. Two-particle quantum interference in tunnel-coupled optical tweezers. Science 345, 306–309 (2014)
Lopes, R. et al. Atomic Hong–Ou–Mandel experiment. Nature 520, 66–68 (2015)
Cramer, M. et al. Spatial entanglement of bosons in optical lattices. Nat. Commun. 4, 2161 (2013)
Fukuhara, T. et al. Spatially resolved detection of a spin-entanglement wave in a Bose–Hubbard chain. Phys. Rev. Lett. 115, 035302 (2015)
Bartlett, S. D. & Wiseman, H. M. Entanglement constrained by superselection rules. Phys. Rev. Lett. 91, 097903 (2003)
Schuch, N., Verstraete, F. & Cirac, J. I. Nonlocal resources in the presence of superselection rules. Phys. Rev. Lett. 92, 087904 (2004)
Palmer, R. N., Moura Alves, C. & Jaksch, D. Detection and characterization of multipartite entanglement in optical lattices. Phys. Rev. A 72, 042335 (2005)
Wolf, M. M., Verstraete, F., Hastings, M. B. & Cirac, J. I. Area laws in quantum systems: mutual information and correlations. Phys. Rev. Lett. 100, 070502 (2008)
Terhal, B. M., DiVincenzo, D. P. & Leung, D. W. Hiding bits in Bell states. Phys. Rev. Lett. 86, 5807–5810 (2001)
Vidal, G. Efficient simulation of one-dimensional quantum many-body systems. Phys. Rev. Lett. 93, 040502 (2004)
Trotzky, S. et al. Probing the relaxation towards equilibrium in an isolated strongly correlated one-dimensional Bose gas. Nature Phys. 8, 325–330 (2012)
Trotzky, S., Chen, Y.-A., Schnorrberger, U., Cheinet, P. & Bloch, I. Controlling and detecting spin correlations of ultracold atoms in optical lattices. Phys. Rev. Lett. 105, 265303 (2010)
Pichler, H., Bonnes, L., Daley, A. J., Läuchli, A. M. & Zoller, P. Thermal versus entanglement entropy: a measurement protocol for fermionic atoms with a quantum gas microscope. New J. Phys. 15, 063003 (2013)
Rigol, M., Dunjko, V. & Olshanii, M. Thermalization and its mechanism |for generic isolated quantum systems. Nature 452, 854–858 (2008)
Zanardi, P. & Paunković, N. Ground state overlap and quantum phase transitions. Phys. Rev. E 74, 031123 (2006)
Acknowledgements
We thank D. Abanin, J. I. Cirac, M. Cramer, A. Daley, A. DelMaestro, E. Demler, M. Endres, S. Gopalakrishnan, M. Headrick, A. Kaufman, M. Knap, T. Monz, A. Pal, H. Pichler, S. Sachdev, B. Swingle, P. Zoller, and M. Zwierlein for useful discussions. This work was supported by grants from the Gordon and Betty Moore Foundations EPiQS Initiative (grant GBMF3795), the NSF through the Center for Ultracold Atoms, the Army Research Office with funding from the DARPA OLE programme and a MURI programme, an Air Force Office of Scientific Research MURI programme, and an NSF Graduate Research Fellowship (to M.R.).
Author information
Authors and Affiliations
Contributions
All authors contributed to the construction and execution of the experiments, data analysis and the writing of the manuscript.
Corresponding author
Ethics declarations
Competing interests
The authors declare no competing financial interests.
Supplementary information
Supplementary Information
This file contains Supplementary Text and Data, Supplementary Figures 1-6 and Supplementary References. (PDF 306 kb)
Rights and permissions
About this article
Cite this article
Islam, R., Ma, R., Preiss, P. et al. Measuring entanglement entropy in a quantum many-body system. Nature 528, 77–83 (2015). https://doi.org/10.1038/nature15750
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1038/nature15750
This article is cited by
-
Relation of entanglement entropy and particle number fluctuations in one-dimensional Hubbard model
Journal of the Korean Physical Society (2023)
-
The influence of mixed classical dephasing noisy channels on the dynamics of two-qubit correlations
Optical and Quantum Electronics (2023)
-
Detecting the Haldane Insulator by Breaking the Chain
Journal of Low Temperature Physics (2023)
-
Disorder-assisted assembly of strongly correlated fluids of light
Nature (2022)
-
A quantum processor based on coherent transport of entangled atom arrays
Nature (2022)
Comments
By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.