Letter | Published:

Measurement of interaction between antiprotons

Nature volume 527, pages 345348 (19 November 2015) | Download Citation

This article has been updated

Abstract

One of the primary goals of nuclear physics is to understand the force between nucleons, which is a necessary step for understanding the structure of nuclei and how nuclei interact with each other. Rutherford discovered the atomic nucleus in 1911, and the large body of knowledge about the nuclear force that has since been acquired was derived from studies made on nucleons or nuclei. Although antinuclei up to antihelium-4 have been discovered1 and their masses measured, little is known directly about the nuclear force between antinucleons. Here, we study antiproton pair correlations among data collected by the STAR experiment2 at the Relativistic Heavy Ion Collider (RHIC)3, where gold ions are collided with a centre-of-mass energy of 200 gigaelectronvolts per nucleon pair. Antiprotons are abundantly produced in such collisions, thus making it feasible to study details of the antiproton–antiproton interaction. By applying a technique similar to Hanbury Brown and Twiss intensity interferometry4, we show that the force between two antiprotons is attractive. In addition, we report two key parameters that characterize the corresponding strong interaction: the scattering length and the effective range of the interaction. Our measured parameters are consistent within errors with the corresponding values for proton–proton interactions. Our results provide direct information on the interaction between two antiprotons, one of the simplest systems of antinucleons, and so are fundamental to understanding the structure of more-complex antinuclei and their properties.

Access optionsAccess options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Change history

  • 18 November 2015

    In the Methods, the equation for the equal-time reduced Bethe-Salpeter amplitude (which can be approximated by the outer solution of the scattering problem) was corrected.

References

  1. 1.

    STAR Collaboration. Observation of the antimatter helium-4 nucleus. Nature 473, 353–356 (2011); erratum 475, 412 (2011)

  2. 2.

    STAR Collaboration. STAR detector overview. Nucl. Instrum. Methods Phys. Res. A 499, 624–632 (2003)

  3. 3.

    , & RHIC project overview. Nucl. Instrum. Methods Phys. Res. A 499, 235–244 (2003)

  4. 4.

    & A new type of interferometer for use in radio astronomy. Phil. Mag. 45, 663–682 (1954)

  5. 5.

    , , & Helium nuclei, deuteron, and dineutron in 2 + 1 flavor lattice QCD. Phys. Rev. D 86, 074514 (2012)

  6. 6.

    & Recent progress in baryogenesis. Annu. Rev. Nucl. Part. Sci. 49, 35–75 (1999)

  7. 7.

    Particle Data Group. Olive, K. A. et al. Review of particle physics. Chin. Phys. C 38, 090001, 96–106 (2014)

  8. 8.

    et al. Hanbury Brown Twiss effect for ultracold quantum gases. Science 310, 648–651 (2005)

  9. 9.

    , & Observation of Hanbury Brown–Twiss anticorrelations for free electrons. Nature 418, 392–394 (2002)

  10. 10.

    et al. Free fermion antibunching in a degenerate atomic Fermi gas released from an optical lattice. Nature 444, 733–736 (2006)

  11. 11.

    , , & Influence of Bose-Einstein statistics on the antiproton-proton annihilation process. Phys. Rev. 120, 300–312 (1960)

  12. 12.

    & Interference of two-particle states in elementary-particle physics and astronomy. Sov. Phys. JETP 42, 211–214 (1975)

  13. 13.

    Interference correlations of identical pions. Theory. Sov. J. Part. Nucl. 20, 266–282 (1989)

  14. 14.

    , & Pion interferometry of nuclear collisions. 1. Theory. Phys. Rev. C 20, 2267–2292 (1979)

  15. 15.

    , & Intensity interferometry in subatomic physics. Rev. Mod. Phys. 62, 553–602 (1990)

  16. 16.

    Correlation femtoscopy of multiparticle processes. Phys. Atom. Nucl . 67, 72–82 (2004)

  17. 17.

    , , & Femtoscopy in relativistic heavy ion collisions: two decades of progress. Ann. Rev. Nucl. Part. Sci . 55, 357–402 (2005)

  18. 18.

    Proton pictures of high-energy nuclear collisions. Phys. Lett. B 70, 43–47 (1977)

  19. 19.

    & Influence of final-state interaction on correlations of two particles with nearly equal momenta. Sov. J. Nucl. Phys . 35, 770–788 (1982)

  20. 20.

    Notes on correlation femtoscopy. Phys. Atom. Nucl . 71, 1572–1578 (2008)

  21. 21.

    STAR Collaboration. Proton-Λ correlations in central Au+Au collisions at . Phys. Rev. C 74, 064906 (2006)

  22. 22.

    STAR Collaboration. Λ-Λ correlation function in Au+Au collisions at . Phys. Rev. Lett. 114, 022301 (2015)

  23. 23.

    et al. The STAR time projection chamber: a unique tool for studying high multiplicity events at RHIC. Nucl. Instrum. Methods Phys. Res. A 499, 659–678 (2003)

  24. 24.

    STAR Collaboration. Multigap RPCs in the STAR experiment at RHIC. Nucl. Instrum. Methods Phys. Res. A 661, S110–S113 (2012)

  25. 25.

    , & Extracting baryon-antibaryon strong-interaction potentials from femtoscopic correlation functions. Phys. Rev. C 89, 054916 (2014)

  26. 26.

    , , & THERMINATOR 2: THERMal heavy IoN generATOR 2. Comput. Phys. Commun. 183, 746–773 (2012)

  27. 27.

    et al. Two-particle correlations at small relative momenta for 40Ar-induced reactions on 197Au at E/A = 60 MeV. Phys. Rev. C 35, 1695–1719 (1987)

  28. 28.

    ALICE Collaboration. One-dimensional pion, kaon, and proton femtoscopy in Pb-Pb collisions at . Preprint at (2015)

  29. 29.

    & Effective range parameters in nucleon-nucleon scattering. Phys. Rev. C 29, 739–746 (1984)

  30. 30.

    , & Neutron-neutron effective range parameters. Phys. Rep. 173, 257–300 (1989)

  31. 31.

    Femtoscopic correlations in multiparticle production and beta-decay. Braz. J. Phys. 37, 939–946 (2007)

  32. 32.

    Finite-size effect on two-particle production in continuous and discrete spectrum. Phys. Part. Nucl. 40, 307–352 (2009)

  33. 33.

    et al. Influence of the emitting nucleus on the light-particle correlation function. Nucl. Phys. A 583, 395–400 (1995)

  34. 34.

    , , & On the sensitivity of nucleon-nucleon correlations to the form of short-range potential. Czech. J. Phys. B 36, 1281–1287 (1986)

  35. 35.

    & Kvantovaya Mekhanika: Nerelyativistskaya Teoriya 3rd edn 585–685 (Nauka, 1974); Landau, L. D. & Lifshitz, E. M. Quantum Mechanics: Non-relativistic theory 3rd edn (Pergamon, 2013) [transl.].

  36. 36.

    & Coulomb effects and charge symmetry breaking for the A = 4 hypernuclei. Phys. Rev. C 31, 1400–1411 (1985)

  37. 37.

    Interaction of two nucleons at low energies. Rev. Mod. Phys. 39, 584–590 (1967)

  38. 38.

    , , & Phase shift analysis of 0–30 MeV pp scattering data. Phys. Rev. C 38, 15–50 (1988)

Download references

Acknowledgements

We thank the RHIC Operations Group and RCF at BNL, the NERSC Center at LBNL, the KISTI Center in Korea, and the Open Science Grid consortium for providing resources and support. This work was supported in part by the Office of Nuclear Physics within the US DOE Office of Science, the US NSF, the Ministry of Education and Science of the Russian Federation, NSFC, the MoST of China (973 Programme No. 2014CB845400), CAS, MoST and MoE of China, the Korean Research Foundation, GA and MSMT of the Czech Republic, FIAS of Germany, DAE, DST and UGC of India, the National Science Centre of Poland, National Research Foundation, the Ministry of Science, Education and Sports of the Republic of Croatia, and RosAtom of Russia.

Author information

Affiliations

  1. AGH University of Science and Technology, Cracow 30-059, Poland

    • L. Adamczyk
    • , L. Fulek
    •  & R. Sikora
  2. University of Kentucky, Lexington, Kentucky, 40506-0055, USA

    • J. K. Adkins
    • , R. Fatemi
    •  & S. Ramachandran
  3. Joint Institute for Nuclear Research, Dubna, 141 980, Russia

    • G. Agakishiev
    • , A. Aparin
    • , G. S. Averichev
    • , I. Bunzarov
    • , T. G. Dedovich
    • , L. G. Efimov
    • , J. Fedorisin
    • , P. Filip
    • , A. Kechechyan
    • , R. Lednicky
    • , Y. Panebratsev
    • , O. V. Rogachevskiy
    • , E. Shahaliev
    • , M. Tokarev
    • , S. Vokal
    •  & Y. Zoulkarneeva
  4. Panjab University, Chandigarh 160014, India

    • M. M. Aggarwal
    • , A. K. Bhati
    • , L. Kumar
    •  & B. Sharma
  5. Variable Energy Cyclotron Centre, Kolkata 700064, India

    • Z. Ahammed
    • , A. Banerjee
    • , S. Chattopadhyay
    • , T. K. Nayak
    • , A. Roy
    • , P. Tribedy
    •  & Y. P. Viyogi
  6. Alikhanov Institute for Theoretical and Experimental Physics, Moscow 117218, Russia

    • I. Alekseev
    • , I. G. Bordyuzhin
    • , D. Kalinkin
    •  & N. Svirida
  7. Kent State University, Kent, Ohio 44242, USA

    • J. Alford
    • , J. Bouchet
    • , A. Hamad
    • , S. Kabana
    • , D. Keane
    • , M. Lomnitz
    • , S. Margetis
    • , A. Quintero
    •  & P. V. Shanmuganathan
  8. Brookhaven National Laboratory, Upton, New York 11973, USA

    • D. Arkhipkin
    • , E. C. Aschenauer
    • , L. C. Bland
    • , I. Chakaberia
    • , W. Christie
    • , R. R. Debbe
    • , B. di Ruzza
    • , L. Didenko
    • , J. C. Dunlop
    • , O. Eyser
    • , S. Fazio
    • , Y. Fisyak
    • , W. Guryn
    • , S. Heppelmann
    • , H. W. Ke
    • , M. A. C. Lamont
    • , J. M. Landgraf
    • , J. Lauret
    • , A. Lebedev
    • , J. H. Lee
    • , X. Li
    • , T. Ljubicic
    • , R. S. Longacre
    • , R. Ma
    • , A. Ogawa
    • , B. S. Page
    • , R. Pak
    • , P. Pile
    • , L. Ruan
    • , W. B. Schmidke
    • , D. Smirnov
    • , P. Sorensen
    • , A. H. Tang
    • , T. Ullrich
    • , G. Van Buren
    • , G. van Nieuwenhuizen
    • , F. Videbæk
    • , H. Wang
    • , J. C. Webb
    • , G. Webb
    • , Z. Xu
    •  & K. Yip
  9. National Institute of Science Education and Research, Bhubaneswar 751005, India

    • V. Bairathi
    • , R. Haque
    • , D. Mishra
    •  & B. Mohanty
  10. University of Houston, Houston, Texas 77204, USA

    • R. Bellwied
    • , D. McDonald
    • , L. Song
    •  & A. R. Timmins
  11. University of Jammu, Jammu 180001, India

    • A. Bhasin
    • , A. Gupta
    • , S. Gupta
    •  & M. K. Sharma
  12. University of Texas, Austin, Texas 78712, USA

    • P. Bhattarai
    • , G. W. Hoffmann
    • , C. Markert
    • , R. L. Ray
    •  & J. Schambach
  13. Czech Technical University in Prague, FNSPE, Prague, 115 19, Czech Republic

    • J. Bielcik
    • , P. Chaloupka
    • , O. Rusnakova
    •  & B. A. Trzeciak
  14. Nuclear Physics Institute AS CR, 250 68 Řež/Prague, Czech Republic

    • J. Bielcikova
    • , P. Federic
    • , J. Rusnak
    • , M. Simko
    • , M. Sumbera
    • , D. Tlusty
    •  & R. Vertesi
  15. Rice University, Houston, Texas 77251, USA

    • J. D. Brandenburg
    • , J. Butterworth
    • , G. Eppley
    • , F. Geurts
    • , J. B. Roberts
    • , K. Xin
    •  & P. Yepes
  16. Moscow Engineering Physics Institute, Moscow 115409, Russia

    • A. V. Brandin
    • , L. Kochenda
    • , P. Kravtsov
    • , G. Nigmatkulov
    • , V. Okorokov
    •  & M. Strikhanov
  17. Yale University, New Haven, Connecticut 06520, USA

    • H. Caines
    • , J. W. Harris
    • , S. Horvat
    • , R. Majka
    • , J. Sandweiss
    • , N. Smirnov
    •  & L. Yi
  18. University of California, Davis, California 95616, USA

    • M. Calderón de la Barca Sánchez
    • , D. Cebra
    • , J. E. Draper
    • , C. E. Flores
    • , K. Meehan
    •  & J. L. Romero
  19. Ohio State University, Columbus, Ohio 43210, USA

    • J. M. Campbell
    • , T. J. Humanic
    • , M. A. Lisa
    • , A. Peterson
    •  & I. Upsal
  20. Texas A&M University, College Station, Texas 77843, USA

    • M. C. Cervantes
    • , Z. Chang
    • , C. A. Gagliardi
    • , A. Hamed
    • , S. Mioduszewski
    • , M. M. Mondal
    • , N. R. Sahoo
    •  & R. E. Tribble
  21. Shanghai Institute of Applied Physics, Shanghai 201800, China

    • J. H. Chen
    • , W. Li
    • , G. L. Ma
    • , Y. G. Ma
    • , L. Ma
    • , N. Shah
    • , W. Q. Shen
    • , Q. Y. Shou
    • , Y. F. Xu
    • , Z. Zhang
    • , S. Zhang
    •  & C. Zhong
  22. Institute of Modern Physics, Lanzhou 730000, China

    • X. Chen
    • , C. M. Du
    • , Z. Sun
    • , J. S. Wang
    • , H. Xu
    • , Y. Yang
    •  & J. Zhang
  23. Tsinghua University, Beijing 100084, China

    • J. Cheng
    • , X. Huang
    • , K. Kang
    • , Y. Li
    • , Y. Wang
    • , Z. G. Xiao
    • , X. P. Zhang
    •  & X. Zhu
  24. Creighton University, Omaha, Nebraska 68178, USA

    • M. Cherney
    • , L. C. De Silva
    •  & J. Seger
  25. Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA

    • G. Contin
    • , X. Dong
    • , L. Greiner
    • , S. Klein
    • , A. Manion
    • , H. Masui
    • , H. S. Matis
    • , M. K. Mustafa
    • , G. Odyniec
    • , J. Porter
    • , A. M. Poskanzer
    • , H. Qiu
    • , H. G. Ritter
    • , I. Sakrejda
    • , S. Salur
    • , A. M. Schmah
    • , E. P. Sichtermann
    • , X. Sun
    • , M. A. Szelezniak
    • , J. H. Thomas
    • , H. Wieman
    •  & N. Xu
  26. University of California, Berkeley, California 94720, USA

    • H. J. Crawford
    • , J. Engelage
    • , E. G. Judd
    •  & C. Perkins
  27. Institute of Physics, Bhubaneswar 751005, India

    • S. Das
    • , P. K. Sahu
    •  & S. K. Tripathy
  28. Shandong University, Jinan, Shandong 250100, China

    • J. Deng
    • , Q. H. Xu
    •  & J. Zhang
  29. Institute of High Energy Physics, Protvino 142281, Russia

    • A. A. Derevschikov
    • , N. G. Minaev
    • , D. A. Morozov
    • , L. V. Nogach
    • , S. B. Nurushev
    •  & A. N. Vasiliev
  30. Pennsylvania State University, University Park, Pennsylvania 16802, USA

    • C. Dilks
    • , S. Heppelmann
    •  & B. Summa
  31. Valparaiso University, Valparaiso, Indiana 46383, USA

    • J. L. Drachenberg
    • , A. Gibson
    • , D. Grosnick
    • , D. D. Koetke
    •  & T. D. S. Stanislaus
  32. University of California, Los Angeles, California 90095, USA

    • L. E. Dunkelberger
    • , R. Esha
    • , H. Z. Huang
    • , G. Igo
    • , K. D. Landry
    • , Md. Nasim
    • , Y. X. Pan
    • , S. Trentalange
    • , O. D. Tsai
    • , G. Wang
    •  & L. Wen
  33. University of Illinois at Chicago, Chicago, Illinois 60607, USA

    • O. Evdokimov
    • , D. J. Hofman
    • , B. Huang
    • , Z. H. Khan
    • , Y. Pandit
    •  & Z. Ye
  34. Central China Normal University (HZNU), Wuhan 430079, China

    • Z. Feng
    • , P. Huck
    • , Z. M. Li
    • , F. Liu
    • , X. Luo
    • , H. Pei
    • , S. S. Shi
    • , X. M. Sun
    • , Y. Wang
    • , Y. F. Wu
    • , Y. Yang
    • , N. Yu
    • , J. B. Zhang
    •  & J. Zhao
  35. Purdue University, West Lafayette, Indiana 47907, USA

    • D. Garand
    • , L. He
    • , A. Hirsch
    • , R. P. Scharenberg
    • , B. Srivastava
    • , M. Stepanov
    • , B. Stringfellow
    • , F. Wang
    •  & W. Xie
  36. Warsaw University of Technology, Warsaw 00-661, Poland

    • M. Girard
    • , D. P. Kikoła
    • , A. Kisiel
    • , L. K. Kosarzewski
    • , J. Pluta
    • , K. Poniatowska
    •  & H. Zbroszczyk
  37. Temple University, Philadelphia, Pennsylvania 19122, USA

    • D. S. Gunarathne
    • , A. F. Kraishan
    • , X. Li
    • , D. Olvitt
    • , M. Posik
    • , B. Surrow
    •  & M. Vandenbroucke
  38. University of Science and Technology of China, Hefei 230026, China

    • Y. Guo
    • , K. Jiang
    • , C. Li
    • , M. Shao
    • , Y. Sun
    • , Z. Tang
    • , C. Yang
    • , S. Yang
    • , Q. Yang
    • , W. Zha
    • , Y. Zhang
    •  & L. Zhou
  39. Indiana University, Bloomington, Indiana 47408, USA

    • W. W. Jacobs
    • , M. J. Skoby
    • , A. Vossen
    •  & S. W. Wissink
  40. Korea Institute of Science and Technology Information, Daejeon 305-701, South Korea

    • H. Jang
    •  & S. Y. Noh
  41. Wayne State University, Detroit, Michigan 48201, USA

    • K. Kauder
    • , W. J. Llope
    • , J. Putschke
    •  & S. A. Voloshin
  42. Frankfurt Institute for Advanced Studies FIAS, Frankfurt 60438, Germany

    • I. Kisel
    • , T. Kollegger
    • , I. Kulakov
    • , R. Stock
    •  & M. Zyzak
  43. Argonne National Laboratory, Argonne, Illinois 60439, USA

    • K. Krueger
    • , H. M. Spinka
    •  & D. G. Underwood
  44. Institute of Nuclear Physics PAN, Cracow 31-342, Poland

    • R. A. Kycia
    •  & B. Pawlik
  45. World Laboratory for Cosmology and Particle Physics (WLCAPP), Cairo 11571, Egypt

    • N. Magdy
    •  & A. Tawfik
  46. Indian Institute of Technology, Mumbai 400076, India

    • B. K. Nandi
    • , A. Sarkar
    •  & R. Varma
  47. Michigan State University, East Lansing, Michigan 48824, USA

    • J. Novak
    • , T. Tarnowsky
    •  & G. D. Westfall
  48. Pusan National University, Pusan 609735, South Korea

    • K. Oh
    •  & I.-K. Yoo
  49. University of Zagreb, Zagreb, HR-10002, Croatia

    • M. Planinic
    •  & N. Poljak
  50. University of Rajasthan, Jaipur 302004, India

    • R. Raniwala
    •  & S. Raniwala
  51. Max-Planck-Institut fur Physik, Munich 80805, Germany

    • N. Schmitz
    •  & P. Seyboth
  52. United States Naval Academy, Annapolis, Maryland 21402, USA

    • R. Witt

Consortia

  1. The STAR Collaboration

Authors

    Contributions

    All authors contributed equally.

    Competing interests

    The author declare no competing financial interests.

    Extended data

    About this article

    Publication history

    Received

    Accepted

    Published

    DOI

    https://doi.org/10.1038/nature15724

    Further reading

    • Synthesis, self-assembly, and photomechanical actuator performance of a sequence-defined polyviologen crosslinker

      • Abigail O. Delawder
      • , Anusree Natraj
      • , Nathan D. Colley
      • , Tiana Saak
      • , Angelique F. Greene
      •  & Jonathan C. Barnes

      Supramolecular Chemistry (2019)

    • Effects of Ptot gates and velocity gates on light-particle momentum correlation in intermediate-energy heavy-ion collisions

      • Ting-Ting Wang
      • , Yu-Gang Ma
      •  & Zheng-Qiao Zhang

      Physical Review C (2019)

    • Technology Development for Nuclear Physics at USTC

      • Ming Shao
      • , Yongjie Sun
      • , Zebo Tang
      • , Yifei Zhang
      • , Yunlong Zhang
      • , Zhiyong Zhang
      •  & Lei Zhao

      Nuclear Physics News (2019)

    • Prospects for potato genome editing to engineer resistance against viruses and cold-induced sweetening

      • Amir Hameed
      • , Muhammad Aamer Mehmood
      • , Muhammad Shahid
      • , Shabih Fatma
      • , Aysha Khan
      •  & Sumbal Ali

      GM Crops & Food (2019)

    • The proton–Ω correlation function in Au + Au collisions at sNN=200GeV

      • J. Adam
      • , L. Adamczyk
      • , J.R. Adams
      • , J.K. Adkins
      • , G. Agakishiev
      • , M.M. Aggarwal
      • , Z. Ahammed
      • , N.N. Ajitanand
      • , I. Alekseev
      • , D.M. Anderson
      • , R. Aoyama
      • , A. Aparin
      • , D. Arkhipkin
      • , E.C. Aschenauer
      • , M.U. Ashraf
      • , F. Atetalla
      • , A. Attri
      • , G.S. Averichev
      • , X. Bai
      • , V. Bairathi
      • , K. Barish
      • , A.J. Bassill
      • , A. Behera
      • , R. Bellwied
      • , A. Bhasin
      • , A.K. Bhati
      • , J. Bielcik
      • , J. Bielcikova
      • , L.C. Bland
      • , I.G. Bordyuzhin
      • , J.D. Brandenburg
      • , A.V. Brandin
      • , D. Brown
      • , J. Bryslawskyj
      • , I. Bunzarov
      • , J. Butterworth
      • , H. Caines
      • , M. Calderón de la Barca Sánchez
      • , J.M. Campbell
      • , D. Cebra
      • , I. Chakaberia
      • , P. Chaloupka
      • , Z. Chang
      • , F.-H. Chang
      • , N. Chankova-Bunzarova
      • , A. Chatterjee
      • , S. Chattopadhyay
      • , J.H. Chen
      • , X. Chen
      • , X. Chen
      • , J. Cheng
      • , M. Cherney
      • , W. Christie
      • , G. Contin
      • , H.J. Crawford
      • , S. Das
      • , T.G. Dedovich
      • , I.M. Deppner
      • , A.A. Derevschikov
      • , L. Didenko
      • , C. Dilks
      • , X. Dong
      • , J.L. Drachenberg
      • , J.C. Dunlop
      • , L.G. Efimov
      • , N. Elsey
      • , J. Engelage
      • , G. Eppley
      • , R. Esha
      • , S. Esumi
      • , O. Evdokimov
      • , J. Ewigleben
      • , O. Eyser
      • , R. Fatemi
      • , S. Fazio
      • , P. Federic
      • , P. Federicova
      • , J. Fedorisin
      • , P. Filip
      • , E. Finch
      • , Y. Fisyak
      • , C.E. Flores
      • , L. Fulek
      • , C.A. Gagliardi
      • , T. Galatyuk
      • , F. Geurts
      • , A. Gibson
      • , D. Grosnick
      • , D.S. Gunarathne
      • , Y. Guo
      • , A. Gupta
      • , W. Guryn
      • , A.I. Hamad
      • , A. Hamed
      • , A. Harlenderova
      • , J.W. Harris
      • , L. He
      • , S. Heppelmann
      • , S. Heppelmann
      • , N. Herrmann
      • , A. Hirsch
      • , L. Holub
      • , S. Horvat
      • , B. Huang
      • , X. Huang
      • , S.L. Huang
      • , T. Huang
      • , H.Z. Huang
      • , T.J. Humanic
      • , P. Huo
      • , G. Igo
      • , W.W. Jacobs
      • , A. Jentsch
      • , J. Jia
      • , K. Jiang
      • , S. Jowzaee
      • , E.G. Judd
      • , S. Kabana
      • , D. Kalinkin
      • , K. Kang
      • , D. Kapukchyan
      • , K. Kauder
      • , H.W. Ke
      • , D. Keane
      • , A. Kechechyan
      • , D.P. Kikoła
      • , C. Kim
      • , T.A. Kinghorn
      • , I. Kisel
      • , A. Kisiel
      • , L. Kochenda
      • , L.K. Kosarzewski
      • , A.F. Kraishan
      • , L. Kramarik
      • , L. Krauth
      • , P. Kravtsov
      • , K. Krueger
      • , N. Kulathunga
      • , S. Kumar
      • , L. Kumar
      • , R. Kunnawalkam Elayavalli
      • , J. Kvapil
      • , J.H. Kwasizur
      • , R. Lacey
      • , J.M. Landgraf
      • , J. Lauret
      • , A. Lebedev
      • , R. Lednicky
      • , J.H. Lee
      • , Y. Li
      • , W. Li
      • , C. Li
      • , X. Li
      • , Y. Liang
      • , J. Lidrych
      • , T. Lin
      • , A. Lipiec
      • , M.A. Lisa
      • , H. Liu
      • , P. Liu
      • , F. Liu
      • , Y. Liu
      • , T. Ljubicic
      • , W.J. Llope
      • , M. Lomnitz
      • , R.S. Longacre
      • , S. Luo
      • , X. Luo
      • , L. Ma
      • , G.L. Ma
      • , R. Ma
      • , Y.G. Ma
      • , N. Magdy
      • , R. Majka
      • , D. Mallick
      • , S. Margetis
      • , C. Markert
      • , H.S. Matis
      • , O. Matonoha
      • , D. Mayes
      • , J.A. Mazer
      • , K. Meehan
      • , J.C. Mei
      • , N.G. Minaev
      • , S. Mioduszewski
      • , D. Mishra
      • , B. Mohanty
      • , M.M. Mondal
      • , I. Mooney
      • , D.A. Morozov
      • , Md. Nasim
      • , J.D. Negrete
      • , J.M. Nelson
      • , D.B. Nemes
      • , M. Nie
      • , G. Nigmatkulov
      • , T. Niida
      • , L.V. Nogach
      • , T. Nonaka
      • , S.B. Nurushev
      • , G. Odyniec
      • , A. Ogawa
      • , S. Oh
      • , K. Oh
      • , V.A. Okorokov
      • , D. Olvitt
      • , B.S. Page
      • , R. Pak
      • , Y. Panebratsev
      • , B. Pawlik
      • , H. Pei
      • , C. Perkins
      • , J. Pluta
      • , J. Porter
      • , M. Posik
      • , N.K. Pruthi
      • , M. Przybycien
      • , J. Putschke
      • , A. Quintero
      • , S.K. Radhakrishnan
      • , S. Ramachandran
      • , R.L. Ray
      • , R. Reed
      • , H.G. Ritter
      • , J.B. Roberts
      • , O.V. Rogachevskiy
      • , J.L. Romero
      • , L. Ruan
      • , J. Rusnak
      • , O. Rusnakova
      • , N.R. Sahoo
      • , P.K. Sahu
      • , S. Salur
      • , J. Sandweiss
      • , J. Schambach
      • , A.M. Schmah
      • , W.B. Schmidke
      • , N. Schmitz
      • , B.R. Schweid
      • , F. Seck
      • , J. Seger
      • , M. Sergeeva
      • , R. Seto
      • , P. Seyboth
      • , N. Shah
      • , E. Shahaliev
      • , P.V. Shanmuganathan
      • , M. Shao
      • , W.Q. Shen
      • , F. Shen
      • , S.S. Shi
      • , Q.Y. Shou
      • , E.P. Sichtermann
      • , S. Siejka
      • , R. Sikora
      • , M. Simko
      • , S. Singha
      • , D. Smirnov
      • , N. Smirnov
      • , W. Solyst
      • , P. Sorensen
      • , H.M. Spinka
      • , B. Srivastava
      • , T.D.S. Stanislaus
      • , D.J. Stewart
      • , M. Strikhanov
      • , B. Stringfellow
      • , A.A.P. Suaide
      • , T. Sugiura
      • , M. Sumbera
      • , B. Summa
      • , X. Sun
      • , Y. Sun
      • , X.M. Sun
      • , B. Surrow
      • , D.N. Svirida
      • , P. Szymanski
      • , Z. Tang
      • , A.H. Tang
      • , A. Taranenko
      • , T. Tarnowsky
      • , J.H. Thomas
      • , A.R. Timmins
      • , D. Tlusty
      • , T. Todoroki
      • , M. Tokarev
      • , C.A. Tomkiel
      • , S. Trentalange
      • , R.E. Tribble
      • , P. Tribedy
      • , S.K. Tripathy
      • , O.D. Tsai
      • , B. Tu
      • , T. Ullrich
      • , D.G. Underwood
      • , I. Upsal
      • , G. Van Buren
      • , J. Vanek
      • , A.N. Vasiliev
      • , I. Vassiliev
      • , F. Videbæk
      • , S. Vokal
      • , S.A. Voloshin
      • , A. Vossen
      • , F. Wang
      • , G. Wang
      • , Y. Wang
      • , Y. Wang
      • , J.C. Webb
      • , L. Wen
      • , G.D. Westfall
      • , H. Wieman
      • , S.W. Wissink
      • , R. Witt
      • , Y. Wu
      • , Z.G. Xiao
      • , W. Xie
      • , G. Xie
      • , Z. Xu
      • , J. Xu
      • , Y.F. Xu
      • , N. Xu
      • , Q.H. Xu
      • , Y. Yang
      • , C. Yang
      • , S. Yang
      • , Q. Yang
      • , Z. Ye
      • , Z. Ye
      • , L. Yi
      • , K. Yip
      • , I.-K. Yoo
      • , N. Yu
      • , H. Zbroszczyk
      • , W. Zha
      • , Z. Zhang
      • , J. Zhang
      • , L. Zhang
      • , J. Zhang
      • , Y. Zhang
      • , X.P. Zhang
      • , S. Zhang
      • , S. Zhang
      • , J. Zhao
      • , C. Zhong
      • , C. Zhou
      • , L. Zhou
      • , Z. Zhu
      • , X. Zhu
      •  & M. Zyzak

      Physics Letters B (2019)

    Comments

    By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.