Abstract

The composition of the neutral gas comas of most comets is dominated by H2O, CO and CO2, typically comprising as much as 95 per cent of the total gas density1. In addition, cometary comas have been found to contain a rich array of other molecules, including sulfuric compounds and complex hydrocarbons. Molecular oxygen (O2), however, despite its detection on other icy bodies such as the moons of Jupiter and Saturn2,3, has remained undetected in cometary comas. Here we report in situ measurement of O2 in the coma of comet 67P/Churyumov–Gerasimenko, with local abundances ranging from one per cent to ten per cent relative to H2O and with a mean value of 3.80 ± 0.85 per cent. Our observations indicate that the O2/H2O ratio is isotropic in the coma and does not change systematically with heliocentric distance. This suggests that primordial O2 was incorporated into the nucleus during the comet’s formation, which is unexpected given the low upper limits from remote sensing observations4. Current Solar System formation models do not predict conditions that would allow this to occur.

Access optionsAccess options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

References

  1. 1.

    , & in Comets II (eds , & ) 391–423 (Univ. Arizona Press, 2004)

  2. 2.

    , , , & Detection of an oxygen atmosphere on Jupiter’s moon Europa. Nature 373, 677–679 (1995)

  3. 3.

    et al. Production, ionization and redistribution of O2 in Saturn’s ring atmosphere. Icarus 180, 393–402 (2006)

  4. 4.

    et al. Herschel measurements of molecular oxygen in Orion. Astrophys. J. 737, 96 (2011)

  5. 5.

    et al. ROSINA — ROSETTA orbiter spectrometer for ion and neutral analysis. Space Sci. Rev. 128, 745–801 (2007)

  6. 6.

    et al. Time variability and heterogeneity in the coma of 67P/Churyumov-Gerasimenko. Science 347, aaa0276 (2015)

  7. 7.

    et al. Composition-dependent outgassing of comet 67P/Churyumov-Gerasimenko from ROSINA/DFMS — implications for nucleus heterogeneity? Astron. Astrophys. (2015)

  8. 8.

    et al. The diurnal cycle of water ice on comet 67P/Churyumov–Gerasimenko. Nature 525, 500–503 (2015)

  9. 9.

    et al. The organic-rich surface of comet 67P/Churyumov-Gerasimenko as seen by VIRTIS/Rosetta. Science 347, aaa0628 (2015)

  10. 10.

    et al. Erosion and molecular formation in condensed gas films by electronic energy loss of fast ions. Nucl. Instrum. Methods 198, 1–8 (1982)

  11. 11.

    et al. Hydrogen peroxide on the surface of Europa. Science 283, 2062–2064 (1999)

  12. 12.

    , & Charge-coupled device spectra of the Galilean satellites: molecular oxygen on Ganymede. J. Geophys. Res. 100, 19049–19056 (1995)

  13. 13.

    & Condensed O2 on Europa and Callisto. Astron. J. 124, 3400–3403 (2002)

  14. 14.

    et al. Constraints on the abundance of solid O2 in dense clouds from ISO-SWS and ground-based observations. Astron. Astrophys. 346, L57–L60 (1999)

  15. 15.

    et al. A 3–5 μm VLT spectroscopic survey of embedded young low mass stars I. Structure of the CO ice. Astron. Astrophys. 408, 981–1007 (2003)

  16. 16.

    et al. Multi-line detection of O2 toward ρ Ophiuchi A. Astron. Astrophys. 541, A73 (2012)

  17. 17.

    et al. Molecular oxygen in the Ophiuchi cloud. Astron. Astrophys. 466, 999–1003 (2007)

  18. 18.

    et al. Deep observations of O2 toward a low-mass protostar with Herschel-HIFI. Astron. Astrophys. 558, A58 (2013)

  19. 19.

    , & Multilayer modeling of porous grain surface chemistry. I. The GRAINOBLE model. Astron. Astrophys. 538, A42 (2012)

  20. 20.

    et al. Detection of interstellar hydrogen peroxide. Astron. Astrophys. 531, L8 (2011)

  21. 21.

    , & Detection of the hydroperoxyl radical HO2 toward ρ Ophiuchi A. Additional constraints on the water chemical network. Astron. Astrophys. 541, L11 (2012)

  22. 22.

    , & Production of interstellar hydrogen peroxide (H2O2) on the surface of dust grains. Astron. Astrophys. 538, A91 (2012)

  23. 23.

    et al. Molecular nitrogen in comet 67P/Churyumov-Gerasimenko indicates a low formation temperature. Science 348, 232–235 (2015)

  24. 24.

    , & The molecular composition of the planet-forming regions of protoplanetary disks across the luminosity range. Astron. Astrophys. 582, A88 (2015)

  25. 25.

    & O2/O3 microatmospheres in the surface of Ganymede. Astrophys. J. 480, L79–L82 (1997)

  26. 26.

    et al. The ancient heritage of water ice in the solar system. Science 345, 1590–1593 (2014)

  27. 27.

    et al. 67P/Churyumov-Gerasimenko, a Jupiter family comet with a high D/H ratio. Science 347, (2015)

  28. 28.

    et al. Influence of spacecraft outgassing on the exploration of tenuous atmospheres with in situ mass spectrometry. J. Geophys. Res. 115, A12313 (2010)

  29. 29.

    & Electron impact dissociative ionization of CO2: measurements with a focusing time-of-flight mass spectrometer. J. Chem. Phys. 108, 927 (1998)

  30. 30.

    et al. ROSINA/DFMS and IES observations of 67P: ion-neutral chemistry in the coma of a weakly outgassing comet. Astron. Astrophys (2015)

  31. 31.

    , & Formation of hydrogen, oxygen and hydrogen peroxide in electron-irradiated crystalline water ice. Astrophys. J. 639, 534–548 (2006)

  32. 32.

    , & Heliospheric cosmic ray irradiation of Kuiper belt comets. Adv. Space Res. 21, 1611–1614 (1998)

  33. 33.

    & The importance of pores in the electron stimulated production of D2 and O2 in low temperature ice. Surf. Sci. 593, 180–186 (2005)

  34. 34.

    The recent dynamical history of comet 67P/Churyumov-Gerasimenko. Astron. Astrophys. 579, A78 (2015)

  35. 35.

    et al. Solar wind sputtering of dust on the surface of 67P/Churyumov-Gerasimenko. Astron. Astrophys (2015)

Download references

Acknowledgements

Work at the University of Michigan was funded by NASA contract JPL-1266313. Work at the University of Bern was funded by the State of Bern, the Swiss National Science Foundation and the European Space Agency PRODEX Program. Work at Max-Planck-Institut für Sonnensystemforschung was funded by the Max-Planck Society and BMWI contract 50QP1302. Work at Southwest Research Institute was supported by subcontract 1496541 from the Jet Propulsion Laboratory. Work at BIRA-IASB was supported by the Belgian Science Policy Office via PRODEX/ROSINA PEA 90020. This work was carried out thanks to the support of the A*MIDEX project (no. ANR-11-IDEX-0001-02) funded by the ‘Investissements d’Avenir’ French Government programme, managed by the French National Research Agency (ANR). This work was supported by CNES grants at IRAP, LATMOS, LPC2E, UTINAM, CRPG, and by the European Research Council (grant no. 267255 to B.M.). A.B.-N. thanks the Ministry of Science and the Israel Space agency. Work by J.H.W. at Southwest Research Institute was funded by NASA JPL subcontract NAS703001TONMO710889. E.F.v.D. and C.W. are supported by A-ERC grant 291141 CHEMPLAN and an NWO Veni award. We acknowledge here the work of the whole ESA Rosetta team.

Author information

Affiliations

  1. Department of Climate and Space Science and Engineering, University of Michigan, 2455 Hayward Street, Ann Arbor, Michigan 48109, USA

    • A. Bieler
    • , M. Combi
    • , T. I. Gombosi
    •  & K. C. Hansen
  2. Physikalisches Institut, University of Bern, Sidlerstrasse 5, CH-3012 Bern, Switzerland

    • A. Bieler
    • , K. Altwegg
    • , H. Balsiger
    • , P. Bochsler
    • , U. Calmonte
    • , S. Gasc
    • , M. Hässig
    • , A. Jäckel
    • , E. Kopp
    • , M. Rubin
    • , T. Sémon
    • , C.-Y. Tzou
    •  & P. Wurz
  3. Center for Space and Habitability, University of Bern, Sidlerstrasse 5, CH-3012 Bern, Switzerland

    • K. Altwegg
    • , L. Le Roy
    •  & P. Wurz
  4. Department of Geosciences, Tel-Aviv University, Ramat-Aviv, 6997801 Tel-Aviv, Israel

    • A. Bar-Nun
  5. LATMOS/IPSL-CNRS-UPMC-UVSQ, 4 Avenue de Neptune, F-94100 Saint-Maur, France

    • J.-J. Berthelier
  6. Laboratoire de Physique et Chimie de l’Environnement et de l’Espace (LPC2E), UMR 6115 CNRS – Université d’Orléans, 45071 Orléans, France

    • C. Briois
  7. Belgian Institute for Space Aeronomy, BIRA-IASB, Ringlaan 3, B-1180 Brussels, Belgium

    • J. De Keyser
    •  & R. Maggiolo
  8. Leiden Observatory, Leiden University, PO Box 9513, 2300 RA Leiden, The Netherlands

    • E. F. van Dishoeck
    •  & C. Walsh
  9. Institute of Computer and Network Engineering (IDA), TU Braunschweig, Hans-Sommer-Straße 66, D-38106 Braunschweig, Germany

    • B. Fiethe
  10. Space Science and Engineering Division, Southwest Research Institute, 6220 Culebra Road, San Antonio, Texas 78228, USA

    • S. A. Fuselier
    • , M. Hässig
    •  & J. H. Waite
  11. Max-Planck-Institut für Sonnensystemforschung, Justus-von-Liebig-Weg 3, 37077 Göttingen, Germany

    • A. Korth
    •  & U. Mall
  12. Centre de Recherches Pétrographiques et Géochimiques, CRPG-CNRS, Université de Lorraine, 15 rue Notre Dame des Pauvres, BP 20, 54501 Vandoeuvre lès Nancy, France

    • B. Marty
  13. Aix Marseille Université, CNRS, LAM (Laboratoire d’Astrophysique de Marseille) UMR 7326, 13388 Marseille, France

    • O. Mousis
  14. Institute for Astronomy, University of Hawaii, Honolulu, Hawaii 96822, USA

    • T. Owen
  15. Université de Toulouse–UPS-OMP–IRAP, 31400 Toulouse, France

    • H. Rème
  16. CNRS–IRAP, 9 avenue du Colonel Roche, BP 44346, F-31028 Toulouse Cedex 4, France

    • H. Rème

Authors

  1. Search for A. Bieler in:

  2. Search for K. Altwegg in:

  3. Search for H. Balsiger in:

  4. Search for A. Bar-Nun in:

  5. Search for J.-J. Berthelier in:

  6. Search for P. Bochsler in:

  7. Search for C. Briois in:

  8. Search for U. Calmonte in:

  9. Search for M. Combi in:

  10. Search for J. De Keyser in:

  11. Search for E. F. van Dishoeck in:

  12. Search for B. Fiethe in:

  13. Search for S. A. Fuselier in:

  14. Search for S. Gasc in:

  15. Search for T. I. Gombosi in:

  16. Search for K. C. Hansen in:

  17. Search for M. Hässig in:

  18. Search for A. Jäckel in:

  19. Search for E. Kopp in:

  20. Search for A. Korth in:

  21. Search for L. Le Roy in:

  22. Search for U. Mall in:

  23. Search for R. Maggiolo in:

  24. Search for B. Marty in:

  25. Search for O. Mousis in:

  26. Search for T. Owen in:

  27. Search for H. Rème in:

  28. Search for M. Rubin in:

  29. Search for T. Sémon in:

  30. Search for C.-Y. Tzou in:

  31. Search for J. H. Waite in:

  32. Search for C. Walsh in:

  33. Search for P. Wurz in:

Contributions

A.B. performed data reduction, analysis and wrote the paper; K.A. initialized and edited the paper and contributed to data interpretation; C.B., U.C., M.C., T.I.G., K.C.H., S.G., M.H., A.J., R.M., L.L.R., M.R., C.-Y.T. and T.S. contributed to data analysis and interpretation. A.B.-N. and O.M. contributed to data interpretation relevant to processes in ices. E.F.v.D and C.W. contributed to data interpretation and writing of sections concerning interstellar oxygen. H.B., J.-J.B., P.B., J.D.K., B.F., S.A.F., A.K., U.M., B.M., T.O., H.R., J.H.W. and P.W. contributed to experiment design, calibration and data interpretation. All authors discussed the results, and commented on and revised the manuscript.

Competing interests

The authors declare no competing financial interests.

Corresponding author

Correspondence to A. Bieler.

All ROSINA-DFMS data will be released to the PSA archive of ESA and to the PDS archive of NASA.

About this article

Publication history

Received

Accepted

Published

DOI

https://doi.org/10.1038/nature15707

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.