Abstract

Intracellular lipopolysaccharide from Gram-negative bacteria including Escherichia coli, Salmonella typhimurium, Shigella flexneri, and Burkholderia thailandensis activates mouse caspase-11, causing pyroptotic cell death, interleukin-1β processing, and lethal septic shock. How caspase-11 executes these downstream signalling events is largely unknown. Here we show that gasdermin D is essential for caspase-11-dependent pyroptosis and interleukin-1β maturation. A forward genetic screen with ethyl-N-nitrosourea-mutagenized mice links Gsdmd to the intracellular lipopolysaccharide response. Macrophages from Gsdmd−/− mice generated by gene targeting also exhibit defective pyroptosis and interleukin-1β secretion induced by cytoplasmic lipopolysaccharide or Gram-negative bacteria. In addition, Gsdmd−/− mice are protected from a lethal dose of lipopolysaccharide. Mechanistically, caspase-11 cleaves gasdermin D, and the resulting amino-terminal fragment promotes both pyroptosis and NLRP3-dependent activation of caspase-1 in a cell-intrinsic manner. Our data identify gasdermin D as a critical target of caspase-11 and a key mediator of the host response against Gram-negative bacteria.

Access optionsAccess options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

References

  1. 1.

    et al. Non-canonical inflammasome activation targets caspase-11. Nature 479, 117–121 (2011)

  2. 2.

    et al. Caspase-11 increases susceptibility to Salmonella infection in the absence of caspase-1. Nature 490, 288–291 (2012)

  3. 3.

    et al. TRIF licenses caspase-11-dependent NLRP3 inflammasome activation by gram-negative bacteria. Cell 150, 606–619 (2012)

  4. 4.

    et al. Caspase-11 protects against bacteria that escape the vacuole. Science 339, 975–978 (2013)

  5. 5.

    et al. Differential activation of the inflammasome by caspase-1 adaptors ASC and Ipaf. Nature 430, 213–218 (2004)

  6. 6.

    et al. Cryopyrin activates the inflammasome in response to toxins and ATP. Nature 440, 228–232 (2006)

  7. 7.

    et al. Noncanonical inflammasome activation by intracellular LPS independent of TLR4. Science 341, 1246–1249 (2013)

  8. 8.

    , , , & Cytoplasmic LPS activates caspase-11: implications in TLR4-independent endotoxic shock. Science 341, 1250–1253 (2013)

  9. 9.

    et al. Inflammatory caspases are innate immune receptors for intracellular LPS. Nature 514, 187–192 (2014)

  10. 10.

    & Genome-wide ENU mutagenesis to reveal immune regulators. Immunity 15, 409–418 (2001)

  11. 11.

    et al. Innate immune sensing of bacterial modifications of Rho GTPases by the Pyrin inflammasome. Nature 513, 237–241 (2014)

  12. 12.

    & Identification and characterization of human DFNA5L, mouse Dfna5l, and rat Dfna5l genes in silico. Int. J. Oncol. 25, 765–770 (2004)

  13. 13.

    et al. Gasdermin D (Gsdmd) is dispensable for mouse intestinal epithelium development. Genesis 46, 418–423 (2008)

  14. 14.

    et al. Members of a novel gene family, Gsdm, are expressed exclusively in the epithelium of the skin and gastrointestinal tract in a highly tissue-specific manner. Genomics 89, 618–629 (2007)

  15. 15.

    et al. HIN-200 proteins regulate caspase activation in response to foreign cytoplasmic DNA. Science 323, 1057–1060 (2009)

  16. 16.

    et al. The AIM2 inflammasome is critical for innate immunity to Francisella tularensis. Nature Immunol. 11, 385–393 (2010)

  17. 17.

    et al. AIM2 recognizes cytosolic dsDNA and forms a caspase-1-activating inflammasome with ASC. Nature 458, 514–518 (2009)

  18. 18.

    et al. Cytosolic flagellin requires Ipaf for activation of caspase-1 and interleukin 1β in salmonella-infected macrophages. Nature Immunol. 7, 576–582 (2006)

  19. 19.

    et al. Listeria monocytogenes-infected human peripheral blood mononuclear cells produce IL-1β, depending on listeriolysin O and NLRP3. J. Immunol. 184, 922–930 (2010)

  20. 20.

    & The inflammasomes. Cell 140, 821–832 (2010)

  21. 21.

    , , , & Gout-associated uric acid crystals activate the NALP3 inflammasome. Nature 440, 237–241 (2006)

  22. 22.

    et al. Silica crystals and aluminum salts activate the NALP3 inflammasome through phagosomal destabilization. Nature Immunol. 9, 847–856 (2008)

  23. 23.

    et al. Immune recognition of Pseudomonas aeruginosa mediated by the IPAF/NLRC4 inflammasome. J. Exp. Med. 204, 3235–3245 (2007)

  24. 24.

    et al. Human caspase-4 mediates noncanonical inflammasome activation against gram-negative bacterial pathogens. Proc. Natl Acad. Sci. USA 112, 6688–6693 (2015)

  25. 25.

    & Caspases: evolutionary aspects of their functions in vertebrates. J. Fish Biol. 74, 727–753 (2009)

  26. 26.

    & Death receptors: signaling and modulation. Science 281, 1305–1308 (1998)

  27. 27.

    et al. A combinatorial approach defines specificities of members of the caspase family and granzyme B. Functional relationships established for key mediators of apoptosis. J. Biol. Chem. 272, 17907–17911 (1997)

  28. 28.

    et al. Dual role of caspase-11 in mediating activation of caspase-1 and caspase-3 under pathological conditions. J. Cell Biol. 149, 613–622 (2000)

  29. 29.

    , & Necroptosis: the release of damage-associated molecular patterns and its physiological relevance. Immunity 38, 209–223 (2013)

  30. 30.

    & Caspase-11 activates a canonical NLRP3 inflammasome by promoting K+ efflux. Eur. J. Immunol. (2015)

  31. 31.

    , & Inflammatory stimuli regulate caspase substrate profiles. Mol. Cell. Proteomics 9, 880–893 (2010)

  32. 32.

    et al. Evolution of inflammasome functions in vertebrates: Inflammasome and caspase-1 trigger fish macrophage cell death but are dispensable for the processing of IL-1β. Innate Immun. 18, 815–824 (2012)

  33. 33.

    et al. A novel heterodimeric cysteine protease is required for interleukin-1 beta processing in monocytes. Nature 356, 768–774 (1992)

  34. 34.

    Mechanisms of interleukin-1β release. Immunobiology 214, 543–553 (2009)

  35. 35.

    et al. Single-cell imaging of caspase-1 dynamics reveals an all-or-none inflammasome signaling response. Cell Rep. 8, 974–982 (2014)

  36. 36.

    et al. Murine caspase-11, an ICE-interacting protease, is essential for the activation of ICE. Cell 92, 501–509 (1998)

  37. 37.

    et al. Caspase-1-induced pyroptosis is an innate immune effector mechanism against intracellular bacteria. Nature Immunol. 11, 1136–1142 (2010)

  38. 38.

    , & Pyroptosis: host cell death and inflammation. Nature Rev. Microbiol. 7, 99–109 (2009)

  39. 39.

    et al. Edwardsiella tarda-induced cytotoxicity depends on its type III secretion system and flagellin. Infect. Immun. 82, 3436–3445 (2014)

  40. 40.

    et al. Caspase-11 controls interleukin-1β release through degradation of TRPC1. Cell Rep. 6, 1122–1128 (2014)

  41. 41.

    et al. Massively parallel sequencing of the mouse exome to accurately identify rare, induced mutations: an immediate source for thousands of new mouse models. Open Biol. 2, 120061 (2012)

  42. 42.

    , & Lipopolysaccharides in Rhizobium-legume symbioses. Subcell. Biochem. 53, 339–386 (2010)

  43. 43.

    et al. Identification of cptA, a PmrA-regulated locus required for phosphoethanolamine modification of the Salmonella enterica serovar typhimurium lipopolysaccharide core. J. Bacteriol. 187, 3391–3399 (2005)

  44. 44.

    A method for the determination of amino acid sequence in peptides. Arch. Biochem. 22, 475 (1949)

  45. 45.

    , & Protein identification using 20-minute Edman cycles and sequence mixture analysis. Anal. Biochem. 267, 148–160 (1999)

  46. 46.

    et al. Quantitative production of macrophages or neutrophils ex vivo using conditional Hoxb8. Nature Methods 3, 287–293 (2006)

  47. 47.

    et al. Phosphorylation of NLRC4 is critical for inflammasome activation. Nature 490, 539–542 (2012)

  48. 48.

    et al. Hoxb8 conditionally immortalised macrophage lines model inflammatory monocytic cells with important similarity to dendritic cells. Eur. J. Immunol. 41, 356–365 (2011)

Download references

Acknowledgements

We thank the staff of the Australian Phenomics Facility, Genentech Transgenic Technology and FACS cores, and K. Bowman, J. Payandeh, E. Dueber, R. Aglietti, A. Gupta and A. Peterson for technical expertise and discussion, K. Newton for manuscript editing, A. Muszyński, L. S. Forsberg, and R. W. Carlson for S. typhimurium LPS. Most authors were employees of Genentech, Inc.

Author information

Affiliations

  1. Department of Physiological Chemistry, Genentech Inc., South San Francisco, California 94080, USA

    • Nobuhiko Kayagaki
    • , Irma B. Stowe
    • , Bettina L. Lee
    • , Karen O’Rourke
    •  & Vishva M. Dixit
  2. Department of Molecular Biology, Genentech Inc., South San Francisco, California 94080, USA

    • Keith Anderson
    • , Søren Warming
    • , Trinna Cuellar
    • , Benjamin Haley
    •  & Merone Roose-Girma
  3. Department of Protein Chemistry, Genentech Inc., South San Francisco, California 94080, USA

    • Qui T. Phung
    • , Peter S. Liu
    • , Jennie R. Lill
    • , Hong Li
    •  & Jiansheng Wu
  4. Department of Bioinformatics, Genentech Inc., South San Francisco, California 94080, USA

    • Sarah Kummerfeld
  5. Department of Immunology, Genentech Inc., South San Francisco, California 94080, USA

    • Juan Zhang
    •  & Wyne P. Lee
  6. Program in Cell Death Signaling Networks, Sanford-Burnham-Prebys Medical Discovery Institute, La Jolla, California 92037, USA

    • Scott J. Snipas
    •  & Guy S. Salvesen
  7. The Australian Phenomics Facility, The John Curtin School of Medical Research, The Australian National University, Canberra, Australian Capital Territory 2601, Australia

    • Lucy X. Morris
    • , Linda Fitzgerald
    • , Yafei Zhang
    •  & Edward M. Bertram
  8. Department of Immunology and Infectious Diseases, The John Curtin School of Medical Research, The Australian National University, Canberra, Australian Capital Territory 2601, Australia

    • Edward M. Bertram
    •  & Christopher C. Goodnow
  9. Garvan Institute of Medical Research, Sydney, New South Wales 2010, Australia

    • Christopher C. Goodnow
  10. St. Vincent's Clinical School, UNSW Australia, Darlinghurst, New South Wales 2010, Australia

    • Christopher C. Goodnow

Authors

  1. Search for Nobuhiko Kayagaki in:

  2. Search for Irma B. Stowe in:

  3. Search for Bettina L. Lee in:

  4. Search for Karen O’Rourke in:

  5. Search for Keith Anderson in:

  6. Search for Søren Warming in:

  7. Search for Trinna Cuellar in:

  8. Search for Benjamin Haley in:

  9. Search for Merone Roose-Girma in:

  10. Search for Qui T. Phung in:

  11. Search for Peter S. Liu in:

  12. Search for Jennie R. Lill in:

  13. Search for Hong Li in:

  14. Search for Jiansheng Wu in:

  15. Search for Sarah Kummerfeld in:

  16. Search for Juan Zhang in:

  17. Search for Wyne P. Lee in:

  18. Search for Scott J. Snipas in:

  19. Search for Guy S. Salvesen in:

  20. Search for Lucy X. Morris in:

  21. Search for Linda Fitzgerald in:

  22. Search for Yafei Zhang in:

  23. Search for Edward M. Bertram in:

  24. Search for Christopher C. Goodnow in:

  25. Search for Vishva M. Dixit in:

Contributions

N.K., I.B.S., B.L.L., K.O., T.C., B.H., P.S.L., Q.T.P., J.R.L., H.L., J.W., S.K., J.Z., W.P.L., S.J.S., L.X.M., L.F., Y.Z. and E.M.B. designed and performed experiments. K.A. and S.W. generated Gsdmd−/− mice. S.W. and M.R.-G. generated Casp1−/− mice. N.K. and E.M.B. prepared the manuscript. N.K., G.S.S., E.M.B., C.C.G. and V.M.D. contributed to the study design and data analyses.

Competing interests

The authors declare no competing financial interests.

Corresponding authors

Correspondence to Nobuhiko Kayagaki or Vishva M. Dixit.

Extended data

Supplementary information

PDF files

  1. 1.

    Supplementary Information

    This file contains the Source Gels as follows: Supplementary Figure 1 - Main Figures 1c, 1d, 2b, 3a, 3c, 3e, 4a; Supplementary Figure 2 - Main Figures 5a, 5b, and Extended Data Figures 2b, 3a, 3g 3i; Supplementary Figure 3 – Extended Data Figures 4b, 5a, 5b, 5c, 7a, 7b, 7d.

About this article

Publication history

Received

Accepted

Published

DOI

https://doi.org/10.1038/nature15541

Further reading

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.